Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
63 Research products, page 1 of 7

  • European Marine Science
  • Swiss National Science Foundation
  • CH
  • KZ
  • Electronic Publication Information Center

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access
    Authors: 
    Helen Eri Amsler; Lena M Thöle; Ingrid Stimac; Walter Geibert; Minoru Ikehara; Gerhard Kuhn; Oliver Esper; Samuel L Jaccard;
    Publisher: Copernicus Publications
    Countries: Switzerland, Germany
    Project: SNSF | SeaO2 - Past changes in S... (144811), SNSF | AmocCC - Constraining the... (163003)

    Abstract. We present downcore records of redox-sensitive authigenic uranium (U) and manganese (Mn) concentrations based on five marine sediment cores spanning a meridional transect encompassing the Subantarctic and the Antarctic zones in the Southwest Indian Ocean covering the last glacial cycle. These records signal lower bottom water oxygenation during glacial climate intervals and generally higher oxygenation during warm periods, consistent with climate-related changes in deep ocean remineralised carbon storage. Regional changes in the export of siliceous phytoplankton to the deep-sea may have entailed a secondary influence on oxygen levels at the water-sediment interface, especially in the Subantarctic Zone. The rapid reoxygenation during the deglaciation is in line with increased ventilation and enhanced upwelling after the Last Glacial Maximum (LGM), which, in combination, conspired to transfer previously sequestered remineralised carbon to the surface ocean and the atmosphere, contributing to propel the Earth’s climate out of the last ice age. These records highlight the yet insufficiently documented role the southern Indian Ocean played in the air-sea partitioning of CO2 on glacial-interglacial timescales.

  • Open Access
    Authors: 
    Gijs de Boer; Radiance Calmer; Gina Jozef; John J. Cassano; Jonathan Hamilton; Dale Lawrence; Steven Borenstein; Abhiram Doddi; Christopher Cox; Julia Schmale; +2 more
    Publisher: Springer Science and Business Media LLC
    Countries: Switzerland, Germany
    Project: SNSF | Measurement-Based underst... (188478)

    AbstractOver a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature, pressure, humidity and winds between the surface and 1 km, as well as to document ice properties, including albedo, melt pond fraction, and open water amounts. The atmospheric state flights were primarily conducted by the DataHawk2 sUAS, which was operated primarily in a profiling manner, while the surface property flights were conducted using the HELiX sUAS, which flew grid patterns, profiles, and hover flights. In total, over 120 flights were conducted and over 48 flight hours of data were collected, sampling conditions that included temperatures as low as −35 °C and as warm as 15 °C, spanning the summer melt season.

  • Open Access English
    Authors: 
    K J Allen; F Reide; C Gouramanis; B Keenan; M Stoffel; A Hu; M Ionita;
    Country: Germany
    Project: EC | CLIOARCH (817564), ARC | ARC Future Fellowships - ... (FT200100102), SNSF | CALDERA - EffeCts of lArg... (183571)

    AbstractMany governments and organisations are currently aligning many aspects of their policies and practices to the sustainable development goals (SDGs). Achieving the SDGs should increase social-ecological resilience to shocks like climate change and its impacts. Here, we consider the relationship amongst the three elements—the SDGs, social-ecological resilience and climate change—as a positive feedback loop. We argue that long-term memory encoded in historical, archaeological and related ‘palaeo-data’ is central to understanding each of these elements of the feedback loop, especially when long-term fluctuations are inherent in social-ecological systems and their responses to abrupt change. Yet, there is scant reference to the valuable contribution that can be made by these data from the past in the SDGs or their targets and indicators. The historical and archaeological records emphasise the importance of some key themes running through the SDGs including how diversity, inclusion, learning and innovation can reduce vulnerability to abrupt change, and the role of connectivity. Using paleo-data, we demonstrate how changes in the extent of water-related ecosystems as measured by indicator 6.6.1 may simply be related to natural hydroclimate variability, rather than reflecting actual progress towards Target 6.6. This highlights issues associated with using SDG indicator baselines predicated on short-term and very recent data only. Within the context of the contributions from long-term data to inform the positive feedback loop, we ask whether our current inability to substantively combat anthropogenic climate change threatens achieving both the SDGS and enhanced resilience to climate change itself. We argue that long-term records are central to understanding how and what will improve resilience and enhance our ability to both mitigate and adapt to climate change. However, for uptake of these data to occur, improved understanding of their quality and potential by policymakers and managers is required.

  • Publication . Article . Other literature type . 2021
    Open Access English
    Authors: 
    Thomas A Ronge; Jörg Lippold; Walter Geibert; Samuel L Jaccard; Sebastian Mieruch-Schnülle; Finn Süfke; Ralf Tiedemann;
    Publisher: Springer Science and Business Media LLC
    Countries: Switzerland, France, Germany
    Project: SNSF | SeaO2 - Past changes in S... (172915)

    AbstractThe millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC) is well documented for the last glacial termination and beyond. Despite its importance for the climate system, the evolution of the South Pacific overturning circulation (SPOC) is by far less well understood. A recently published study highlights the potential applicability of the 231Pa/230Th-proxy in the Pacific. Here, we present five sedimentary down-core profiles of 231Pa/230Th-ratios measured on a depth transect from the Pacific sector of the Southern Ocean to test this hypothesis using downcore records. Our data are consistent with an increase in SPOC as early as 20 ka that peaked during Heinrich Stadial 1. The timing indicates that the SPOC did not simply react to AMOC changes via the bipolar seesaw but were triggered via Southern Hemisphere processes.

  • Open Access
    Authors: 
    Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; +21 more
    Publisher: COPERNICUS GESELLSCHAFT MBH
    Countries: United Kingdom, France, Germany, France, United Kingdom
    Project: EC | CRESCENDO (641816), SNSF | The Overlooked Role of St... (180043)

    Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼ 300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer–Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions.

  • Open Access English
    Authors: 
    Sebastian Hellmann; Melchior Grab; Johanna Kerch; Henning Löwe; Andreas Bauder; Ilka Weikusat; Hansruedi Maurer;
    Country: Germany
    Project: SNSF | Comprehensive 3D characte... (169329)

    The crystal orientation fabric (COF) in ice cores provides detailed information, such as grain size and distribution and the orientation of the crystals in relation to the large-scale glacier flow. These data are relevant for a profound understanding of the dynamics and deformation history of glaciers and ice sheets. The intrinsic, mechanical anisotropy of the ice crystals causes an anisotropy of the polycrystalline ice of glaciers and affects the velocity of acoustic waves propagating through the ice. Here, we employ such acoustic waves to obtain the seismic anisotropy of ice core samples and compare the results with calculated acoustic velocities derived from COF analyses. These samples originate from an ice core from Rhonegletscher (Rhone Glacier), a temperate glacier in the Swiss Alps. Point-contact transducers transmit ultrasonic P waves with a dominant frequency of 1 MHz into the ice core samples and measure variations in the travel times of these waves for a set of azimuthal angles. In addition, the elasticity tensor is obtained from laboratory-measured COF, and we calculate the associated seismic velocities. We compare these COF-derived velocity profiles with the measured ultrasonic profiles. Especially in the presence of large ice grains, these two methods show significantly different velocities since the ultrasonic measurements examine a limited volume of the ice core, whereas the COF-derived velocities are integrated over larger parts of the core. This discrepancy between the ultrasonic and COF-derived profiles decreases with an increasing number of grains that are available within the sampling volume, and both methods provide consistent results in the presence of a similar amount of grains. We also explore the limitations of ultrasonic measurements and provide suggestions for improving their results. These ultrasonic measurements could be employed continuously along the ice cores. They are suitable to support the COF analyses by bridging the gaps between discrete measurements since these ultrasonic measurements can be acquired within minutes and do not require an extensive preparation of ice samples when using point-contact transducers.

  • Open Access
    Authors: 
    Cedric Jasper Hahn; Olivier N. Lemaire; Jörg Kahnt; Sylvain Engilberge; Gunter Wegener; Tristan Wagner;
    Publisher: American Association for the Advancement of Science
    Country: Germany
    Project: NSF | Collaborative Research: M... (1357238), SNSF | Development of native-SAD... (182369)

    How to feed an enzyme ethane When released from ocean floor seeps, small hydrocarbons are rapidly consumed by micro-organisms. Methane is highly abundant and is both produced and consumed by microbes through well understood biochemical pathways. Less well understood is how ethane, also a major natural component of gaseous hydrocarbons, is metabolized. To understand how microbes take advantage of this energy and carbon source, Hahn et al. solved the x-ray crystal structures of an enzyme they call ethyl coenzyme-M reductase, which converts ethane into the thioether ethyl-coenzyme M as the entry point for catabolism. They found an expanded active site and, using a xenon gas derivatization experiment, a distinctive tunnel through the protein that is proposed to permit access of the gaseous substrate. Science , abg1765, this issue p. 118

  • Publication . Article . Other literature type . Preprint . 2020
    Open Access English
    Authors: 
    P. Friedlingstein; P. Friedlingstein; M. O'Sullivan; M. W. Jones; R. M. Andrew; J. Hauck; A. Olsen; A. Olsen; G. P. Peters; W. Peters; +93 more
    Publisher: HAL CCSD
    Countries: Germany, Switzerland, France, United Kingdom, France, Netherlands, Germany, Norway, Norway, United Kingdom ...
    Project: UKRI | Marine LTSS: Climate Link... (NE/R015953/1), EC | CRESCENDO (641816), EC | VERIFY (776810), EC | 4C (821003), NSF | INFEWS: U.S.-China: Integ... (1903722), SNSF | Climate and Environmental... (172476), EC | CONSTRAIN (820829), UKRI | NCEO LTS-S (NE/R016518/1), UKRI | Ocean Regulation of Clima... (NE/N018095/1), UKRI | Southern OceaN optimal Ap... (NE/P021417/1)

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ±  0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

  • Open Access English
    Authors: 
    Julie Loisel; Angela V. Gallego-Sala; Matthew J. Amesbury; Gabriel Magnan; Gusti Z. Anshari; David W. Beilman; J. C. Benavides; Jerome Blewett; Philip Camill; Dan J. Charman; +60 more
    Publisher: HAL CCSD
    Countries: United Kingdom, Germany, United Kingdom, France, Finland, France
    Project: UKRI | ICAAP: Increasing Carbon ... (NE/S001166/1), NSERC , NSF | NNA: Collaborative Resear... (1802838), NSF | NNA: Collaborative Resear... (1802825), NSF | RUI: Ecosystem responses ... (1019523), SNSF | Climate and Environmental... (172476)

    Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus. Peer reviewed

  • Open Access English
    Authors: 
    Joanna Pawłowska; Jutta E Wollenburg; Marek Zajączkowski; Jan Pawlowski;
    Publisher: Nature Publishing Group
    Country: Germany
    Project: SNSF | Molecular evolution and e... (179125)

    AbstractDeciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
63 Research products, page 1 of 7
  • Open Access
    Authors: 
    Helen Eri Amsler; Lena M Thöle; Ingrid Stimac; Walter Geibert; Minoru Ikehara; Gerhard Kuhn; Oliver Esper; Samuel L Jaccard;
    Publisher: Copernicus Publications
    Countries: Switzerland, Germany
    Project: SNSF | SeaO2 - Past changes in S... (144811), SNSF | AmocCC - Constraining the... (163003)

    Abstract. We present downcore records of redox-sensitive authigenic uranium (U) and manganese (Mn) concentrations based on five marine sediment cores spanning a meridional transect encompassing the Subantarctic and the Antarctic zones in the Southwest Indian Ocean covering the last glacial cycle. These records signal lower bottom water oxygenation during glacial climate intervals and generally higher oxygenation during warm periods, consistent with climate-related changes in deep ocean remineralised carbon storage. Regional changes in the export of siliceous phytoplankton to the deep-sea may have entailed a secondary influence on oxygen levels at the water-sediment interface, especially in the Subantarctic Zone. The rapid reoxygenation during the deglaciation is in line with increased ventilation and enhanced upwelling after the Last Glacial Maximum (LGM), which, in combination, conspired to transfer previously sequestered remineralised carbon to the surface ocean and the atmosphere, contributing to propel the Earth’s climate out of the last ice age. These records highlight the yet insufficiently documented role the southern Indian Ocean played in the air-sea partitioning of CO2 on glacial-interglacial timescales.

  • Open Access
    Authors: 
    Gijs de Boer; Radiance Calmer; Gina Jozef; John J. Cassano; Jonathan Hamilton; Dale Lawrence; Steven Borenstein; Abhiram Doddi; Christopher Cox; Julia Schmale; +2 more
    Publisher: Springer Science and Business Media LLC
    Countries: Switzerland, Germany
    Project: SNSF | Measurement-Based underst... (188478)

    AbstractOver a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature, pressure, humidity and winds between the surface and 1 km, as well as to document ice properties, including albedo, melt pond fraction, and open water amounts. The atmospheric state flights were primarily conducted by the DataHawk2 sUAS, which was operated primarily in a profiling manner, while the surface property flights were conducted using the HELiX sUAS, which flew grid patterns, profiles, and hover flights. In total, over 120 flights were conducted and over 48 flight hours of data were collected, sampling conditions that included temperatures as low as −35 °C and as warm as 15 °C, spanning the summer melt season.

  • Open Access English
    Authors: 
    K J Allen; F Reide; C Gouramanis; B Keenan; M Stoffel; A Hu; M Ionita;
    Country: Germany
    Project: EC | CLIOARCH (817564), ARC | ARC Future Fellowships - ... (FT200100102), SNSF | CALDERA - EffeCts of lArg... (183571)

    AbstractMany governments and organisations are currently aligning many aspects of their policies and practices to the sustainable development goals (SDGs). Achieving the SDGs should increase social-ecological resilience to shocks like climate change and its impacts. Here, we consider the relationship amongst the three elements—the SDGs, social-ecological resilience and climate change—as a positive feedback loop. We argue that long-term memory encoded in historical, archaeological and related ‘palaeo-data’ is central to understanding each of these elements of the feedback loop, especially when long-term fluctuations are inherent in social-ecological systems and their responses to abrupt change. Yet, there is scant reference to the valuable contribution that can be made by these data from the past in the SDGs or their targets and indicators. The historical and archaeological records emphasise the importance of some key themes running through the SDGs including how diversity, inclusion, learning and innovation can reduce vulnerability to abrupt change, and the role of connectivity. Using paleo-data, we demonstrate how changes in the extent of water-related ecosystems as measured by indicator 6.6.1 may simply be related to natural hydroclimate variability, rather than reflecting actual progress towards Target 6.6. This highlights issues associated with using SDG indicator baselines predicated on short-term and very recent data only. Within the context of the contributions from long-term data to inform the positive feedback loop, we ask whether our current inability to substantively combat anthropogenic climate change threatens achieving both the SDGS and enhanced resilience to climate change itself. We argue that long-term records are central to understanding how and what will improve resilience and enhance our ability to both mitigate and adapt to climate change. However, for uptake of these data to occur, improved understanding of their quality and potential by policymakers and managers is required.

  • Publication . Article . Other literature type . 2021
    Open Access English
    Authors: 
    Thomas A Ronge; Jörg Lippold; Walter Geibert; Samuel L Jaccard; Sebastian Mieruch-Schnülle; Finn Süfke; Ralf Tiedemann;
    Publisher: Springer Science and Business Media LLC
    Countries: Switzerland, France, Germany
    Project: SNSF | SeaO2 - Past changes in S... (172915)

    AbstractThe millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC) is well documented for the last glacial termination and beyond. Despite its importance for the climate system, the evolution of the South Pacific overturning circulation (SPOC) is by far less well understood. A recently published study highlights the potential applicability of the 231Pa/230Th-proxy in the Pacific. Here, we present five sedimentary down-core profiles of 231Pa/230Th-ratios measured on a depth transect from the Pacific sector of the Southern Ocean to test this hypothesis using downcore records. Our data are consistent with an increase in SPOC as early as 20 ka that peaked during Heinrich Stadial 1. The timing indicates that the SPOC did not simply react to AMOC changes via the bipolar seesaw but were triggered via Southern Hemisphere processes.

  • Open Access
    Authors: 
    Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; +21 more
    Publisher: COPERNICUS GESELLSCHAFT MBH
    Countries: United Kingdom, France, Germany, France, United Kingdom
    Project: EC | CRESCENDO (641816), SNSF | The Overlooked Role of St... (180043)

    Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼ 300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer–Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions.

  • Open Access English
    Authors: 
    Sebastian Hellmann; Melchior Grab; Johanna Kerch; Henning Löwe; Andreas Bauder; Ilka Weikusat; Hansruedi Maurer;
    Country: Germany
    Project: SNSF | Comprehensive 3D characte... (169329)

    The crystal orientation fabric (COF) in ice cores provides detailed information, such as grain size and distribution and the orientation of the crystals in relation to the large-scale glacier flow. These data are relevant for a profound understanding of the dynamics and deformation history of glaciers and ice sheets. The intrinsic, mechanical anisotropy of the ice crystals causes an anisotropy of the polycrystalline ice of glaciers and affects the velocity of acoustic waves propagating through the ice. Here, we employ such acoustic waves to obtain the seismic anisotropy of ice core samples and compare the results with calculated acoustic velocities derived from COF analyses. These samples originate from an ice core from Rhonegletscher (Rhone Glacier), a temperate glacier in the Swiss Alps. Point-contact transducers transmit ultrasonic P waves with a dominant frequency of 1 MHz into the ice core samples and measure variations in the travel times of these waves for a set of azimuthal angles. In addition, the elasticity tensor is obtained from laboratory-measured COF, and we calculate the associated seismic velocities. We compare these COF-derived velocity profiles with the measured ultrasonic profiles. Especially in the presence of large ice grains, these two methods show significantly different velocities since the ultrasonic measurements examine a limited volume of the ice core, whereas the COF-derived velocities are integrated over larger parts of the core. This discrepancy between the ultrasonic and COF-derived profiles decreases with an increasing number of grains that are available within the sampling volume, and both methods provide consistent results in the presence of a similar amount of grains. We also explore the limitations of ultrasonic measurements and provide suggestions for improving their results. These ultrasonic measurements could be employed continuously along the ice cores. They are suitable to support the COF analyses by bridging the gaps between discrete measurements since these ultrasonic measurements can be acquired within minutes and do not require an extensive preparation of ice samples when using point-contact transducers.

  • Open Access
    Authors: 
    Cedric Jasper Hahn; Olivier N. Lemaire; Jörg Kahnt; Sylvain Engilberge; Gunter Wegener; Tristan Wagner;
    Publisher: American Association for the Advancement of Science
    Country: Germany
    Project: NSF | Collaborative Research: M... (1357238), SNSF | Development of native-SAD... (182369)

    How to feed an enzyme ethane When released from ocean floor seeps, small hydrocarbons are rapidly consumed by micro-organisms. Methane is highly abundant and is both produced and consumed by microbes through well understood biochemical pathways. Less well understood is how ethane, also a major natural component of gaseous hydrocarbons, is metabolized. To understand how microbes take advantage of this energy and carbon source, Hahn et al. solved the x-ray crystal structures of an enzyme they call ethyl coenzyme-M reductase, which converts ethane into the thioether ethyl-coenzyme M as the entry point for catabolism. They found an expanded active site and, using a xenon gas derivatization experiment, a distinctive tunnel through the protein that is proposed to permit access of the gaseous substrate. Science , abg1765, this issue p. 118

  • Publication . Article . Other literature type . Preprint . 2020
    Open Access English
    Authors: 
    P. Friedlingstein; P. Friedlingstein; M. O'Sullivan; M. W. Jones; R. M. Andrew; J. Hauck; A. Olsen; A. Olsen; G. P. Peters; W. Peters; +93 more
    Publisher: HAL CCSD
    Countries: Germany, Switzerland, France, United Kingdom, France, Netherlands, Germany, Norway, Norway, United Kingdom ...
    Project: UKRI | Marine LTSS: Climate Link... (NE/R015953/1), EC | CRESCENDO (641816), EC | VERIFY (776810), EC | 4C (821003), NSF | INFEWS: U.S.-China: Integ... (1903722), SNSF | Climate and Environmental... (172476), EC | CONSTRAIN (820829), UKRI | NCEO LTS-S (NE/R016518/1), UKRI | Ocean Regulation of Clima... (NE/N018095/1), UKRI | Southern OceaN optimal Ap... (NE/P021417/1)

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ±  0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

  • Open Access English
    Authors: 
    Julie Loisel; Angela V. Gallego-Sala; Matthew J. Amesbury; Gabriel Magnan; Gusti Z. Anshari; David W. Beilman; J. C. Benavides; Jerome Blewett; Philip Camill; Dan J. Charman; +60 more
    Publisher: HAL CCSD
    Countries: United Kingdom, Germany, United Kingdom, France, Finland, France
    Project: UKRI | ICAAP: Increasing Carbon ... (NE/S001166/1), NSERC , NSF | NNA: Collaborative Resear... (1802838), NSF | NNA: Collaborative Resear... (1802825), NSF | RUI: Ecosystem responses ... (1019523), SNSF | Climate and Environmental... (172476)

    Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus. Peer reviewed

  • Open Access English
    Authors: 
    Joanna Pawłowska; Jutta E Wollenburg; Marek Zajączkowski; Jan Pawlowski;
    Publisher: Nature Publishing Group
    Country: Germany
    Project: SNSF | Molecular evolution and e... (179125)

    AbstractDeciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.