Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
100 Research products

  • European Marine Science
  • Other research products
  • FI

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ssebugere, Patrick;

    This thesis describes the occurrence and sources of selected persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorocyclohexanes (HCHs) in the northern watershed of Lake Victoria. Sediments and fish were collected from three highly polluted embayments (i.e. Murchison Bay, Napoleon Gulf and Thurston Bay) of the lake. The analysis for PCDD/Fs, PCBs and PBDEs was done using a high resolution mass spectrometer coupled to a gas chromatograph (GC), and a GC equipped with an electron capture detector was used for HCHs. Total (Σ) PCDD/Fs, PCBs and PBDEs in sediments ranged from 3.19 to 478, 313 to 4325 and 60.8 to 179 pg g-1 dry weight (dw), respectively. The highest concentrations of pollutants were found at sites close to industrial areas and wastewater discharge points. The maximum concentrations of PCDD/Fs, PCBs, PBDEs and HCHs in fish muscle homogenates were 49, 779, 495 and 45,900 pg g-1 wet weight (ww), respectively. The concentrations of the pollutants in Nile perch (Lates niloticus) were significantly greater than those in Nile tilapia (Oreochromis niloticus), possibly due to differences in trophic level and dietary feeding habits among fish species. World Health Organization-toxic equivalency quotient (WHO2005-TEQ) values in the sediments were up to 4.24 pg g-1 dw for PCDD/Fs and 0.55 pg TEQ g-1 dw for the 12 dioxin-like PCBs (dl-PCBs). 23.1% of the samples from the Napoleon Gulf were above the interim sediment quality guideline value of 0.85 pg WHO-TEQ g-1 dw set by the Canadian Council for Ministers of the Environment. The WHO2005-TEQs in fish were 0.001-0.16 pg g-1 for PCDD/Fs and 0.001-0.31 pg g-1 ww for dl- PCBs. The TEQ values were within a permissible level of 3.5 pg g−1 ww recommended by the European Commission. Based on the Commission set TEQs and minimum risk level criteria formulated by the Agency for Toxic Substances and Disease Registry, the consumption of fish from Lake Victoria gives no indication of health risks associated to PCDD/Fs and PCBs. Principal component analysis (PCA) indicated that anthropogenic activities such as agricultural straw open burning, medical waste incinerators and municipal solid waste combustors were the major sources of PCDD/Fs in the watershed of Lake Victoria. The ratios of α-/γ-HCH varied from 0.89 to 1.68 suggesting that the highest HCH residues mainly came from earlier usage and fresh γ-HCH (lindane). In the present study, the concentration of POPs in fish were not significantly related to those in sediments, and the biota sediment accumulation factor (BSAF) concept was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    LUTPub
    2015
    Data sources: LUTPub
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      LUTPub
      2015
      Data sources: LUTPub
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dinh, Ngoc Thi;

    Purpose: Identify impacts of Song Bung 4 Hydropower project to diversity and hydrology; Criticise on mitigation practice and impacts. Method: Screen of impacts from records of other projects and mitigations; Compare with identified impacts and mitigation practices. Findings: Direct lost of some species; environmental flow is not implemented regularly; higher fish yield in reservoir; threaten migratory fish

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Theseus
    2016
    Data sources: Theseus
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Theseus
      2016
      Data sources: Theseus
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Karlsson, Mikael; Gilek, Michael; Lundberg, Cecilia;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SpringerOpenarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SpringerOpenarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laine-Petäjäkangas, Anna Maria; Korrensalo, Aino; Kokkonen, Nicola A K; Tuittila, Eeva-Stiina;

    We measured the following vascular plant functional traits: plant height (cm), leaf size (LS, cm2), specific leaf area (SLA, cm2 g-1), leaf dry matter content (LDMC, mg g-1) and leaf moisture content (g g-1) from the most common species in each research unit. We measured the following Sphagnum traits: capitulum density (number of shoots cm-2), fascicle density (number cm-1), surface density (mg cm-3), capitulum dry mass (mg) and capitulum moisture content (cap_wc, g g-1). In addition, rate of net photosynthesis was measured at four light levels. The data was collected from Lakkasuo mire complex located in Southern Finland (61° 47' N; 24° 18' E). The study includes three sites called rich fen, poor fen, and bog. At each site two experimental units were established in 2000/2001: an undrained control unit and a Water level drawdown (WLD) unit that was surrounded by a 30 cm-deep ditches after a control year. Photosynthesis measurements were carried out during summer 2016, while other traits were sampled during August 2016. We measured vascular plant vegetative height (cm), leaf area (LA, cm2 leaf-1) with a leaf area scanner (LI-3000, LI-COR Inc.), leaf fresh mass and leaf dry mass after the sample was dried at 40 °C for at least 48h (mg leaf-1). Leaf dry matter content (LDMC mg g-1) was calculated from fresh and dry mass, while specific leaf area (SLA, cm2 g-1) was calculated from LA and dry mass. Leaf traits were measured from five replicate plants as an average of a sample of ten fully grown healthy leaves from each plant. Sphagnum moss traits were measured from five replicates of single-species samples. Each sample consisted of two parts: a volume-specific sample collected with a core (diameter 7 cm, area 38.5 cm2, height 3 cm) to maintain the natural density of the stand and an additional sample of ca. 10 individuals, with stems more than 5 cm at length. Before collecting the core in the field, the number of shoots was counted from a 4 × 4 cm square for capitulum density (cap_dens, number of shoots cm-2). The volume-specific sample was cleaned of litter and unwanted species before drying at 40 °C for at least 48h to determine the surface density (surf_dens, mg cm-3). The additional sample of ten moss individuals was divided into capitula and stems (4 cm below capitula). We counted the number of fascicles on the 4 cm stem segments (fasc_dens, number cm-1). The capitula were thoroughly moistened and placed on top of tissue paper for 2 minutes to drain, before weighing them for water-filled fresh mass (cap_fw, mg). The samples were dried at 60 °C for at least 48h to measure the capitulum dry masses (cap_dw, mg). The moisture contents of capitula (cap_mc, g g-1) were then calculated as the ratio of water-filled to dry mass. Height growth (mm growing season-1) was measured in the field with the modified cranked wire method (Clymo 1970) as a difference in height between the beginning (mid-May) and end (mid-October) of the growing season 2017. For both vascular plants and mosses, we measured net photosynthesis rate, with a fully controlled, flow-through gas-exchange fluorescence measurement systems (GFS-3000, Walz, Germany; LI6400, LI-COR, USA). For mosses the living apical parts (~0.5 to 1 cm) were harvested right before the measurement and placed on a custom-made cuvette. For vascular plants, leaves, or in the case of shrubs, segments of branches were enclosed within the cuvette without disturbing the connection to the rooting system. Net photosynthesis rate (A, µmol m-2 g-1 s-1) was measured at 1500, 250, 35, and 0 µmol m-2 s-1 photosynthetic photon flux density (PPFD). The cuvette conditions were kept constant (temperature 20°C, CO2 concentration 400 ppm, flow rate 500, impeller in level 5). Relative humidity (Rh) of incoming air was set to 40% for vascular plants and 60% for mosses; for mosses this setting retained the cuvette Rh at around 80%. The setting enabled mosses to remain moist to ensure photosynthesis but protected the device from excess moisture. The data was collected to find out the impact of long-term WLD on functional traits of vascular plants and mosses, and how this impact is modulated by nutrient status (rich fen, poor fen, bog). We first assess (i) how peatland species differ in their traits and their intraspecific trait variability, to quantify (ii) how WLD impacts community level traits at different peatland sites.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lochte, Karin;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Publicati...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Publicati...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Asanti, Tuomas;

    The aim of this thesis was to study how small logistics sector and fish sector companies in Kymenlaakso region have experienced the effects of Russia’s counter-sanctions. The main research questions in the study were “Have the Russia’s counter-sanctions affected companies’ businesses in Kymenlaakso region?”, “What kind of effect(s) have the companies identified and encountered?”, “What measures have companies taken regarding the situation?” and “Have the companies tried to find new markets for their products or services?”. The primary research method in this study was a semi-structured interview. The author of this thesis interviewed professionals and experts from different companies from the chosen sectors during spring 2015. The findings show that small companies in the logistics sector and fish sector have experienced either direct or indirect effects that have been caused by the counter-sanctions. Main challenges for the fish sector are decreases in producer prices and tightened competition in the European Union area. The logistics sector has experienced difficulties due to tightened liquidity conditions. There have also been bankruptcies in the logistics sector directly caused by the counter-sanctions. Companies in both sectors have been forced to look for alternative markets, postpone investments and lay-off or terminate personnel. Scepticism and uncertainty regarding trade with Russian customers and companies have emerged. On a national level, Finland’s container balance has been negatively affected partly due to the counter-sanctions. The scope of this study is limited to small fish sector and logistics sector companies in Kymenlaakso region. Also, due to the qualitative nature of the primary research method the findings of this study are not generalizable to the public. Tämän opinnäytetyön tarkoituksena oli tarkastella sitä miten pienet logistiikka –ja kalasektorin yritykset Kymenlaakson alueella ovat kokeneet Venäjän asettamien vastapakotteiden vaikutukset. Opinnäytetyön tutkimuskysymykset olivat ”Ovatko Venäjän vastapakotteet vaikuttaneet yritysten toimintaan Kymenlaakson alueella?”, ”Millaisia vaikutuksia yritykset ovat kohdanneet ja identifioineet?”, ”Mitä toimenpiteitä yritykset ovat tehneet tilanteeseen liittyen?” ja ”Ovatko yritykset pyrkineet löytämään tuotteilleen tai palveluilleen uusia markkinoita?”. Tämän opinnäytetyön ensisijainen tutkimusmenetelmä oli semistrukturoitu haastattelu. Opinnäytetyön tekijä haastatteli asiantuntijoita sekä ammattilaisia valituilta sektoreilta kevään 2015 aikana. Tulokset näyttävät, että pienet logistiikka –ja kalasektorin yritykset ovat kohdanneet joko suoria tai epäsuoria vastapakotteiden aiheuttamia vaikutuksia. Keskeisimmät haasteet kalasektorilla johtuvat tuottajahintojen laskusta sekä kiristyneestä kilpailuista Euroopan Union alueella. Logistiikkasektorilla on kohdannut vaikeuksia, jotka ovat johtuneet yritysten hankaloituneesta likviditeettitilanteesta. Myös vastapakotteiden suoraan aiheuttamia konkursseja on havaittu. Molempien sektorien yritykset ovat joutuneet etsimään tuotteilleen tai palveluilleen uusia markkinoita, viivästyttämään investointeja sekä lomauttamaan tai irtisanomaan henkilöstöä. Skeptisyys sekä epävarmuus kaupankäynnissä venäläisten asiakkaiden sekä yritysten kanssa on noussut esiin. Kansallisella tasolla vastapakotteilla on osaltaan ollut negatiivinen vaikutus Suomen konttitasapainoon. Tämän opinnäytetyö on rajoitettu tarkastelemaan pieniä logistiikka – ja kalasektorin yrityksiä Kymenlaakson alueella. Lisäksi, johtuen kvalitatiivisesta tutkimusmenetelmästä tämän opinnäytetyön tuloksia ei voida pitää yleistettävinä muihin yrityksiin.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Theseus
    2015
    Data sources: Theseus
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Theseus
      2015
      Data sources: Theseus
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pham, Thanh Huyen;

    Analyzing and improving marketing strategies of Thien Hong Joint Stock company - a newborn company in the field of sea freight forwarding service in Vietnam. This thesis focused on the 4Ps (product, price, placement, promotion) in marketing strategy, how to apply the theory of services marketing in a business to business company and a special industry effectively.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Theseus
    2015
    Data sources: Theseus
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Theseus
      2015
      Data sources: Theseus
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bergner, Nora; Heutte, Benjamin; Angot, Hélène; Dada, Lubna; +5 Authors

    This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mogollón, J. M.; Dale, A. W.; Fossing, H.; Regnier, P.;

    Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciences (BG)arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciences (BG)arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Spilling, Kristian;

    In an enclosure experiment, we employed two levels of inorganic NP ratios (10 and 5) for three distinct plankton communities collected along the coast of central Chile (33ºS). Each combination of community and NP level was replicated three times. The experiment lasted 12 days, and the data set include inorganic nutrients (NO3, PO4, DSi), particular organic carbon (POC), nitrogen (PON) and phosphorus (POP), Chlorophyll a, a range of fluorescence based measurements such as photochemical efficiency (Fv/Fm) and community data. The primary effect of the NP treatment was related to different concentrations of NO3, which directly influenced the biomass of phytoplankton. Additionally, low inorganic NP ratio reduced the seston NP and Chl a-C ratios, and there were some effects on the plankton community composition, e.g. benefitting Synechococcus spp in some communities.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
100 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ssebugere, Patrick;

    This thesis describes the occurrence and sources of selected persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorocyclohexanes (HCHs) in the northern watershed of Lake Victoria. Sediments and fish were collected from three highly polluted embayments (i.e. Murchison Bay, Napoleon Gulf and Thurston Bay) of the lake. The analysis for PCDD/Fs, PCBs and PBDEs was done using a high resolution mass spectrometer coupled to a gas chromatograph (GC), and a GC equipped with an electron capture detector was used for HCHs. Total (Σ) PCDD/Fs, PCBs and PBDEs in sediments ranged from 3.19 to 478, 313 to 4325 and 60.8 to 179 pg g-1 dry weight (dw), respectively. The highest concentrations of pollutants were found at sites close to industrial areas and wastewater discharge points. The maximum concentrations of PCDD/Fs, PCBs, PBDEs and HCHs in fish muscle homogenates were 49, 779, 495 and 45,900 pg g-1 wet weight (ww), respectively. The concentrations of the pollutants in Nile perch (Lates niloticus) were significantly greater than those in Nile tilapia (Oreochromis niloticus), possibly due to differences in trophic level and dietary feeding habits among fish species. World Health Organization-toxic equivalency quotient (WHO2005-TEQ) values in the sediments were up to 4.24 pg g-1 dw for PCDD/Fs and 0.55 pg TEQ g-1 dw for the 12 dioxin-like PCBs (dl-PCBs). 23.1% of the samples from the Napoleon Gulf were above the interim sediment quality guideline value of 0.85 pg WHO-TEQ g-1 dw set by the Canadian Council for Ministers of the Environment. The WHO2005-TEQs in fish were 0.001-0.16 pg g-1 for PCDD/Fs and 0.001-0.31 pg g-1 ww for dl- PCBs. The TEQ values were within a permissible level of 3.5 pg g−1 ww recommended by the European Commission. Based on the Commission set TEQs and minimum risk level criteria formulated by the Agency for Toxic Substances and Disease Registry, the consumption of fish from Lake Victoria gives no indication of health risks associated to PCDD/Fs and PCBs. Principal component analysis (PCA) indicated that anthropogenic activities such as agricultural straw open burning, medical waste incinerators and municipal solid waste combustors were the major sources of PCDD/Fs in the watershed of Lake Victoria. The ratios of α-/γ-HCH varied from 0.89 to 1.68 suggesting that the highest HCH residues mainly came from earlier usage and fresh γ-HCH (lindane). In the present study, the concentration of POPs in fish were not significantly related to those in sediments, and the biota sediment accumulation factor (BSAF) concept was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    LUTPub
    2015
    Data sources: LUTPub
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUTPubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      LUTPub
      2015
      Data sources: LUTPub
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dinh, Ngoc Thi;

    Purpose: Identify impacts of Song Bung 4 Hydropower project to diversity and hydrology; Criticise on mitigation practice and impacts. Method: Screen of impacts from records of other projects and mitigations; Compare with identified impacts and mitigation practices. Findings: Direct lost of some species; environmental flow is not implemented regularly; higher fish yield in reservoir; threaten migratory fish

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Theseus
    2016
    Data sources: Theseus
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Theseus
      2016
      Data sources: Theseus
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Karlsson, Mikael; Gilek, Michael; Lundberg, Cecilia;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SpringerOpenarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SpringerOpenarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laine-Petäjäkangas, Anna Maria; Korrensalo, Aino; Kokkonen, Nicola A K; Tuittila, Eeva-Stiina;

    We measured the following vascular plant functional traits: plant height (cm), leaf size (LS, cm2), specific leaf area (SLA, cm2 g-1), leaf dry matter content (LDMC, mg g-1) and leaf moisture content (g g-1) from the most common species in each research unit. We measured the following Sphagnum traits: capitulum density (number of shoots cm-2), fascicle density (number cm-1), surface density (mg cm-3), capitulum dry mass (mg) and capitulum moisture content (cap_wc, g g-1). In addition, rate of net photosynthesis was measured at four light levels. The data was collected from Lakkasuo mire complex located in Southern Finland (61° 47' N; 24° 18' E). The study includes three sites called rich fen, poor fen, and bog. At each site two experimental units were established in 2000/2001: an undrained control unit and a Water level drawdown (WLD) unit that was surrounded by a 30 cm-deep ditches after a control year. Photosynthesis measurements were carried out during summer 2016, while other traits were sampled during August 2016. We measured vascular plant vegetative height (cm), leaf area (LA, cm2 leaf-1) with a leaf area scanner (LI-3000, LI-COR Inc.), leaf fresh mass and leaf dry mass after the sample was dried at 40 °C for at least 48h (mg leaf-1). Leaf dry matter content (LDMC mg g-1) was calculated from fresh and dry mass, while specific leaf area (SLA, cm2 g-1) was calculated from LA and dry mass. Leaf traits were measured from five replicate plants as an average of a sample of ten fully grown healthy leaves from each plant. Sphagnum moss traits were measured from five replicates of single-species samples. Each sample consisted of two parts: a volume-specific sample collected with a core (diameter 7 cm, area 38.5 cm2, height 3 cm) to maintain the natural density of the stand and an additional sample of ca. 10 individuals, with stems more than 5 cm at length. Before collecting the core in the field, the number of shoots was counted from a 4 × 4 cm square for capitulum density (cap_dens, number of shoots cm-2). The volume-specific sample was cleaned of litter and unwanted species before drying at 40 °C for at least 48h to determine the surface density (surf_dens, mg cm-3). The additional sample of ten moss individuals was divided into capitula and stems (4 cm below capitula). We counted the number of fascicles on the 4 cm stem segments (fasc_dens, number cm-1). The capitula were thoroughly moistened and placed on top of tissue paper for 2 minutes to drain, before weighing them for water-filled fresh mass (cap_fw, mg). The samples were dried at 60 °C for at least 48h to measure the capitulum dry masses (cap_dw, mg). The moisture contents of capitula (cap_mc, g g-1) were then calculated as the ratio of water-filled to dry mass. Height growth (mm growing season-1) was measured in the field with the modified cranked wire method (Clymo 1970) as a difference in height between the beginning (mid-May) and end (mid-October) of the growing season 2017. For both vascular plants and mosses, we measured net photosynthesis rate, with a fully controlled, flow-through gas-exchange fluorescence measurement systems (GFS-3000, Walz, Germany; LI6400, LI-COR, USA). For mosses the living apical parts (~0.5 to 1 cm) were harvested right before the measurement and placed on a custom-made cuvette. For vascular plants, leaves, or in the case of shrubs, segments of branches were enclosed within the cuvette without disturbing the connection to the rooting system. Net photosynthesis rate (A, µmol m-2 g-1 s-1) was measured at 1500, 250, 35, and 0 µmol m-2 s-1 photosynthetic photon flux density (PPFD). The cuvette conditions were kept constant (temperature 20°C, CO2 concentration 400 ppm, flow rate 500, impeller in level 5). Relative humidity (Rh) of incoming air was set to 40% for vascular plants and 60% for mosses; for mosses this setting retained the cuvette Rh at around 80%. The setting enabled mosses to remain moist to ensure photosynthesis but protected the device from excess moisture. The data was collected to find out the impact of long-term WLD on functional traits of vascular plants and mosses, and how this impact is modulated by nutrient status (rich fen, poor fen, bog). We first assess (i) how peatland species differ in their traits and their intraspecific trait variability, to quantify (ii) how WLD impacts community level traits at different peatland sites.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lochte, Karin;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Publicati...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Publicati...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Asanti, Tuomas;

    The aim of this thesis was to study how small logistics sector and fish sector companies in Kymenlaakso region have experienced the effects of Russia’s counter-sanctions. The main research questions in the study were “Have the Russia’s counter-sanctions affected companies’ businesses in Kymenlaakso region?”, “What kind of effect(s) have the companies identified and encountered?”, “What measures have companies taken regarding the situation?” and “Have the companies tried to find new markets for their products or services?”. The primary research method in this study was a semi-structured interview. The author of this thesis interviewed professionals and experts from different companies from the chosen sectors during spring 2015. The findings show that small companies in the logistics sector and fish sector have experienced either direct or indirect effects that have been caused by the counter-sanctions. Main challenges for the fish sector are decreases in producer prices and tightened competition in the European Union area. The logistics sector has experienced difficulties due to tightened liquidity conditions. There have also been bankruptcies in the logistics sector directly caused by the counter-sanctions. Companies in both sectors have been forced to look for alternative markets, postpone investments and lay-off or terminate personnel. Scepticism and uncertainty regarding trade with Russian customers and companies have emerged. On a national level, Finland’s container balance has been negatively affected partly due to the counter-sanctions. The scope of this study is limited to small fish sector and logistics sector companies in Kymenlaakso region. Also, due to the qualitative nature of the primary research method the findings of this study are not generalizable to the public. Tämän opinnäytetyön tarkoituksena oli tarkastella sitä miten pienet logistiikka –ja kalasektorin yritykset Kymenlaakson alueella ovat kokeneet Venäjän asettamien vastapakotteiden vaikutukset. Opinnäytetyön tutkimuskysymykset olivat ”Ovatko Venäjän vastapakotteet vaikuttaneet yritysten toimintaan Kymenlaakson alueella?”, ”Millaisia vaikutuksia yritykset ovat kohdanneet ja identifioineet?”, ”Mitä toimenpiteitä yritykset ovat tehneet tilanteeseen liittyen?” ja ”Ovatko yritykset pyrkineet löytämään tuotteilleen tai palveluilleen uusia markkinoita?”. Tämän opinnäytetyön ensisijainen tutkimusmenetelmä oli semistrukturoitu haastattelu. Opinnäytetyön tekijä haastatteli asiantuntijoita sekä ammattilaisia valituilta sektoreilta kevään 2015 aikana. Tulokset näyttävät, että pienet logistiikka –ja kalasektorin yritykset ovat kohdanneet joko suoria tai epäsuoria vastapakotteiden aiheuttamia vaikutuksia. Keskeisimmät haasteet kalasektorilla johtuvat tuottajahintojen laskusta sekä kiristyneestä kilpailuista Euroopan Union alueella. Logistiikkasektorilla on kohdannut vaikeuksia, jotka ovat johtuneet yritysten hankaloituneesta likviditeettitilanteesta. Myös vastapakotteiden suoraan aiheuttamia konkursseja on havaittu. Molempien sektorien yritykset ovat joutuneet etsimään tuotteilleen tai palveluilleen uusia markkinoita, viivästyttämään investointeja sekä lomauttamaan tai irtisanomaan henkilöstöä. Skeptisyys sekä epävarmuus kaupankäynnissä venäläisten asiakkaiden sekä yritysten kanssa on noussut esiin. Kansallisella tasolla vastapakotteilla on osaltaan ollut negatiivinen vaikutus Suomen konttitasapainoon. Tämän opinnäytetyö on rajoitettu tarkastelemaan pieniä logistiikka – ja kalasektorin yrityksiä Kymenlaakson alueella. Lisäksi, johtuen kvalitatiivisesta tutkimusmenetelmästä tämän opinnäytetyön tuloksia ei voida pitää yleistettävinä muihin yrityksiin.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Theseus
    2015
    Data sources: Theseus
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Theseus
      2015
      Data sources: Theseus
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pham, Thanh Huyen;

    Analyzing and improving marketing strategies of Thien Hong Joint Stock company - a newborn company in the field of sea freight forwarding service in Vietnam. This thesis focused on the 4Ps (product, price, placement, promotion) in marketing strategy, how to apply the theory of services marketing in a business to business company and a special industry effectively.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Theseus
    2015
    Data sources: Theseus
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theseusarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Theseus
      2015
      Data sources: Theseus
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bergner, Nora; Heutte, Benjamin; Angot, Hélène; Dada, Lubna; +5 Authors

    This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mogollón, J. M.; Dale, A. W.; Fossing, H.; Regnier, P.;

    Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciences (BG)arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciences (BG)arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Spilling, Kristian;

    In an enclosure experiment, we employed two levels of inorganic NP ratios (10 and 5) for three distinct plankton communities collected along the coast of central Chile (33ºS). Each combination of community and NP level was replicated three times. The experiment lasted 12 days, and the data set include inorganic nutrients (NO3, PO4, DSi), particular organic carbon (POC), nitrogen (PON) and phosphorus (POP), Chlorophyll a, a range of fluorescence based measurements such as photochemical efficiency (Fv/Fm) and community data. The primary effect of the NP treatment was related to different concentrations of NO3, which directly influenced the biomass of phytoplankton. Additionally, low inorganic NP ratio reduced the seston NP and Chl a-C ratios, and there were some effects on the plankton community composition, e.g. benefitting Synechococcus spp in some communities.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/