- home
- Advanced Search
30 Research products, page 1 of 3
Loading
- Other research product . Collection . 2022Open Access EnglishAuthors:Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Publisher: PANGAEAProject: EC | BREMEN TRAC (600411), NWO | TRAFFIC: Transatlantic fl... (9378), EC | DUSTCO (796802), EC | PORTWIMS (810139)
Data refer to export fluxes of carbonate produced by calcifying phytoplankton (coccolithophores), and coccolith-CaCO₃ percent contribution to total carbonate flux across the tropical North Atlantic, from upwelling affected NW Africa, via three ocean sites along 12°N to the Caribbean. Sampling was undertaken by means of a spatial array of four time-series sediment traps (i.e., CB at 21°N 20°W; M1U at 12°N 23°W; M2U at 14°N 37°W; M4U at 12°N 49°W; Guerreiro et al., 2021) collecting particle fluxes in two-week intervals, from October 2012 to February 2014, allowing to track temporal changes along the southern margin of the North Atlantic central gyre. Auxiliary PIC (Particulate Inorganic Carbon) data from NASA's Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov) are also provided for the sediment sampling period at all four trap sites. Particle flux data (mg/m²/d) of CaCO₃, organic matter, particulate organic carbon (POC), biogenic silica (bSiO₂) and unspecified residual fraction are provided for sediment trap site CB.
- Other research product . Collection . 2022Open Access EnglishAuthors:Brandt, Peter; Krahmann, Gerd;Brandt, Peter; Krahmann, Gerd;Publisher: PANGAEAProject: EC | TRIATLAS (817578)
Comparison of the equatorial upwelling system, the northern coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system.
- Other research product . Collection . 2022Open Access EnglishAuthors:Ehlert von Ahn, Cátia Milene; Böttcher, Michael Ernst; Dellwig, Olaf; Schmiedinger, Iris; Scholten, Jan Christoph;Ehlert von Ahn, Cátia Milene; Böttcher, Michael Ernst; Dellwig, Olaf; Schmiedinger, Iris; Scholten, Jan Christoph;Publisher: PANGAEAProject: EC | SGDBALTIC (293499)
Short sediment cores were taken at six stations in Wismar Bay, southern Baltic Sea (Germany) in May 2019 using a Rumohr-Lot device. Our aim in this study was to investigate the role of diagenetic element fluxes and different fresh water sources, including submarine groundwater discharge, on the water column in the bay. Porewaters were extracted from the sediment cores by applying the rhizon technique at a resolution between 2 and 5 cm. The porewaters were analyzed for major and trace metals and selected nutrients using a ICP-OES (iCAP, 7400, Duo Thermo Fischer Scientific), total sulphide by a Specord 40 spectrophotometer (Analytik Jena), dissolved inorganic carbon (DIC) and δ13CDIC using an isotope gas mass spectrometre (MAT 253) coupled to a Gasbench II, and δ18OH2O, and δ2HH2O using a CRDS system (laser cavity-ring-down-spectroscopy, Picarro L2140- I). Sediment cores were further sliced at 2 to 4 cm resolution and each freeze-dried solid subsample was analyzed for contents of total carbon, nitrogen, and sulphur using an Elemental Analyzer (Euro Vector EuroEA 3, 052), inorganic carbon using an Elemental Analyzer multi EA (Analytik Jena), total mercury by a DMA-80 analyzer, and HCl-extractable Pb, Mn and Fe using an ICP-OES (iCAP, 7400, Duo Thermo Fischer Scientific).
- Other research product . Collection . 2022EnglishAuthors:Carreiro-Silva, Marina; Martins, Ines; Raimundo, Joana; Caetano, Miguel; Bettencourt, Raul; Cerqueira, Teresa; Colaço, Ana;Carreiro-Silva, Marina; Martins, Ines; Raimundo, Joana; Caetano, Miguel; Bettencourt, Raul; Cerqueira, Teresa; Colaço, Ana;Publisher: PANGAEAProject: FCT | Mining2/0005/2017 (Mining2/0005/2017), EC | ATLAS (678760), EC | MIDAS (603418), EC | iAtlantic (818123)
We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Corals were collected from the summit of Condor Seamount (Azores, NE Atlantic) at depths between 185-210 m in August 2014. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. PMS particles were obtained by grinding PMS inactive chimney rocks collected at the hydrothermal vent field Lucky Strike. Both particle types were delivered at a concentration of 25 mg L-1. The putative effects of PMS particles were evaluated through measurements of the coral physiological responses at the levels of the organism (oxygen consumption, ammonium excretion), tissue (bioaccumulation of metals) and cell (enzyme activity and gene expression).
- Other research product . Collection . 2022Open Access EnglishAuthors:Sarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; Armengól, Laia; Medina-Suárez, Ione; Castellón, Arturo; Hernández-León, Santiago;Sarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; Armengól, Laia; Medina-Suárez, Ione; Castellón, Arturo; Hernández-León, Santiago;Publisher: PANGAEAProject: EC | SUMMER (817806), EC | TRIATLAS (817578)
Physical oceanography variables and carbon remineralisation (juveniles/adults of Cyclothone species and Argyropelecus hemigymnus) were analysed during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the depth, temperature, and conductivity which were recorded from surface to a maximum depth of 2000 m using a SeaBird SBE 25plus CTD equipped with a Seabird-43 Dissolved Oxygen sensor and a Seapoint Fluorometer. Values of numerical abundance, biomass, specific ETS activity, specific respiraton and respiration flux data analyzed from Northwest Africa (20° N, 20° W) to the South of Iceland are presented. A. hemigymnus specimens were collected using a ''Mesopelagos” net (5 x7 m mouth opening, 58 m total length) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers. However, Cyclothone specimens were collected using the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS-1 m²) zooplankton net with a 0.2 mm mesh size and with several nets for collecting samples from 8 different depth layers. The Mesopelagos catches were sorted out and identified on board to the lowest possible taxon, and specimens selected for Electron Transfer System (ETS) analyses were immediately frozen in liquid nitrogen for later analysis in the laboratory. MOCNESS samples were preserved in 5% buffered formalin, and specimens were sorted out later in the laboratory. Stomiiforms respiration in the meso- and bathypelagic zones of the ocean were estimated along the transect. Abundance, biomass, specific ETS activity, specific respiration and respiration are given by layer between e.g. 100 m and 1000 m depth (MOCNESS net, 1900–1600 m, 1600–1300 m, 1300–1000 m, 1000–700 m, 700–400 m, 400–200 m, 200–100 m and 100–0 m; Mesopelagos, 1900–1200 m, 1200–800 m, 800–500 m, 500–200 m and 200–0 m).
- Other research product . 2022Open Access EnglishAuthors:Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Acher-Nicholls, Scott; Dorling, Steve R.; Reeves, Claire E.; Butler, Tim;Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Acher-Nicholls, Scott; Dorling, Steve R.; Reeves, Claire E.; Butler, Tim;Project: EC | ASIBIA (616938)
Tropospheric ozone (O3) concentrations depend on a combination of hemispheric, regional, and local-scale processes. Estimates of how much O3 is produced locally vs. transported from further afield are essential in air quality management and regulatory policies. Here, a tagged-ozone mechanism within the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to quantify the contributions to surface O3 in the UK from anthropogenic nitrogen oxide (NOx) emissions from inside and outside the UK during May–August 2015. The contribution of the different source regions to three regulatory O3 metrics is also examined. It is shown that model simulations predict the concentration and spatial distribution of surface O3 with a domain-wide mean bias of −3.7 ppbv. Anthropogenic NOx emissions from the UK and Europe account for 13 % and 16 %, respectively, of the monthly mean surface O3 in the UK, as the majority (71 %) of O3 originates from the hemispheric background. Hemispheric O3 contributes the most to concentrations in the north and the west of the UK with peaks in May, whereas European and UK contributions are most significant in the east, south-east, and London, i.e. the UK's most populated areas, intensifying towards June and July. Moreover, O3 from European sources is generally transported to the UK rather than produced in situ. It is demonstrated that more stringent emission controls over continental Europe, particularly in western Europe, would be necessary to improve the health-related metric MDA8 O3 above 50 and 60 ppbv. Emission controls over larger areas, such as the Northern Hemisphere, are instead required to lessen the impacts on ecosystems as quantified by the AOT40 metric.
- Other research product . 2022Open Access EnglishAuthors:Healy, Susan D.; Patton, B. Wren;Healy, Susan D.; Patton, B. Wren;
handle: 10023/24943
Country: United KingdomBut fish cognitive ecology did not begin in rivers and streams. Rather, one of the starting points for work on fish cognitive ecology was work done on the use of visual cues by homing pigeons. Prior to working with fish, Victoria Braithwaite helped to establish that homing pigeons rely not just on magnetic and olfactory cues but also on visual cues for successful return to their home loft. Simple, elegant experiments on homing established Victoria's ability to develop experimental manipulations to examine the role of visual cues in navigation by fish in familiar areas. This work formed the basis of a rich seam of work whereby a fish's ecology was used to propose hypotheses and predictions as to preferred cue use, and then cognitive abilities in a variety of fish species, from model systems (Atlantic salmon and sticklebacks) to the Panamanian Brachyraphis episcopi. Cognitive ecology in fish led to substantial work on fish pain and welfare, but was never left behind, with some of Victoria's last work addressed to determining the neural instantiation of cognitive variation. Publisher PDF Peer reviewed
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . 2022Open Access EnglishAuthors:Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;Project: EC | ICE2ICE (610055)
Greenland ice cores provide information about past climate. Few impurity records covering the past 2 decades exist from Greenland. Here we present results from six firn cores obtained during a 426 km long northern Greenland traverse made in 2015 between the NEEM and the EGRIP deep-drilling stations situated on the western side and eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analyzed for chemical impurities and cover time spans of 18 to 53 years (±3 years) depending on local snow accumulation that decreases from west to east. The high temporal resolution allows for annual layers and seasons to be resolved. Insoluble dust, ammonium, and calcium concentrations in the six firn cores overlap, and the seasonal cycles are also similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations, H2O2 driven by the accumulation pattern, and conductivity likely influenced by sea salt. Overall, we determine a rather constant dust flux over the period, but in the data from recent years (1998–2015) we identify an increase in large dust particles that we ascribe to an activation of local Greenland sources. We observe an expected increase in acidity and conductivity in the mid-1970s as a result of anthropogenic emissions, followed by a decrease due to mitigation. Several volcanic horizons identified in the conductivity and acidity records can be associated with eruptions in Iceland and in the Barents Sea region. From a composite ammonium record we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R=0.49).
- Other research product . Other ORP type . 2022Open Access EnglishAuthors:Galgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; +2 moreGalgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; Steinhoff, Tobias; Loiselle, Steven A.;Publisher: ZenodoProject: EC | POSEIDOMM (702747)
Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.
- Other research product . 2022Open Access EnglishAuthors:Droste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; +2 moreDroste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; Trace-Kleeberg, Sunke; Bakker, Dorothee C. E.;Project: EC | CARBOCHANGE (264879)
Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekström Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air–sea CO2 flux that can range between a strong sink (−24 mmol m−2 d−1) and a small source (3 mmol m−2 d−1) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.
30 Research products, page 1 of 3
Loading
- Other research product . Collection . 2022Open Access EnglishAuthors:Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Publisher: PANGAEAProject: EC | BREMEN TRAC (600411), NWO | TRAFFIC: Transatlantic fl... (9378), EC | DUSTCO (796802), EC | PORTWIMS (810139)
Data refer to export fluxes of carbonate produced by calcifying phytoplankton (coccolithophores), and coccolith-CaCO₃ percent contribution to total carbonate flux across the tropical North Atlantic, from upwelling affected NW Africa, via three ocean sites along 12°N to the Caribbean. Sampling was undertaken by means of a spatial array of four time-series sediment traps (i.e., CB at 21°N 20°W; M1U at 12°N 23°W; M2U at 14°N 37°W; M4U at 12°N 49°W; Guerreiro et al., 2021) collecting particle fluxes in two-week intervals, from October 2012 to February 2014, allowing to track temporal changes along the southern margin of the North Atlantic central gyre. Auxiliary PIC (Particulate Inorganic Carbon) data from NASA's Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov) are also provided for the sediment sampling period at all four trap sites. Particle flux data (mg/m²/d) of CaCO₃, organic matter, particulate organic carbon (POC), biogenic silica (bSiO₂) and unspecified residual fraction are provided for sediment trap site CB.
- Other research product . Collection . 2022Open Access EnglishAuthors:Brandt, Peter; Krahmann, Gerd;Brandt, Peter; Krahmann, Gerd;Publisher: PANGAEAProject: EC | TRIATLAS (817578)
Comparison of the equatorial upwelling system, the northern coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system.
- Other research product . Collection . 2022Open Access EnglishAuthors:Ehlert von Ahn, Cátia Milene; Böttcher, Michael Ernst; Dellwig, Olaf; Schmiedinger, Iris; Scholten, Jan Christoph;Ehlert von Ahn, Cátia Milene; Böttcher, Michael Ernst; Dellwig, Olaf; Schmiedinger, Iris; Scholten, Jan Christoph;Publisher: PANGAEAProject: EC | SGDBALTIC (293499)
Short sediment cores were taken at six stations in Wismar Bay, southern Baltic Sea (Germany) in May 2019 using a Rumohr-Lot device. Our aim in this study was to investigate the role of diagenetic element fluxes and different fresh water sources, including submarine groundwater discharge, on the water column in the bay. Porewaters were extracted from the sediment cores by applying the rhizon technique at a resolution between 2 and 5 cm. The porewaters were analyzed for major and trace metals and selected nutrients using a ICP-OES (iCAP, 7400, Duo Thermo Fischer Scientific), total sulphide by a Specord 40 spectrophotometer (Analytik Jena), dissolved inorganic carbon (DIC) and δ13CDIC using an isotope gas mass spectrometre (MAT 253) coupled to a Gasbench II, and δ18OH2O, and δ2HH2O using a CRDS system (laser cavity-ring-down-spectroscopy, Picarro L2140- I). Sediment cores were further sliced at 2 to 4 cm resolution and each freeze-dried solid subsample was analyzed for contents of total carbon, nitrogen, and sulphur using an Elemental Analyzer (Euro Vector EuroEA 3, 052), inorganic carbon using an Elemental Analyzer multi EA (Analytik Jena), total mercury by a DMA-80 analyzer, and HCl-extractable Pb, Mn and Fe using an ICP-OES (iCAP, 7400, Duo Thermo Fischer Scientific).
- Other research product . Collection . 2022EnglishAuthors:Carreiro-Silva, Marina; Martins, Ines; Raimundo, Joana; Caetano, Miguel; Bettencourt, Raul; Cerqueira, Teresa; Colaço, Ana;Carreiro-Silva, Marina; Martins, Ines; Raimundo, Joana; Caetano, Miguel; Bettencourt, Raul; Cerqueira, Teresa; Colaço, Ana;Publisher: PANGAEAProject: FCT | Mining2/0005/2017 (Mining2/0005/2017), EC | ATLAS (678760), EC | MIDAS (603418), EC | iAtlantic (818123)
We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Corals were collected from the summit of Condor Seamount (Azores, NE Atlantic) at depths between 185-210 m in August 2014. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. PMS particles were obtained by grinding PMS inactive chimney rocks collected at the hydrothermal vent field Lucky Strike. Both particle types were delivered at a concentration of 25 mg L-1. The putative effects of PMS particles were evaluated through measurements of the coral physiological responses at the levels of the organism (oxygen consumption, ammonium excretion), tissue (bioaccumulation of metals) and cell (enzyme activity and gene expression).
- Other research product . Collection . 2022Open Access EnglishAuthors:Sarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; Armengól, Laia; Medina-Suárez, Ione; Castellón, Arturo; Hernández-León, Santiago;Sarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; Armengól, Laia; Medina-Suárez, Ione; Castellón, Arturo; Hernández-León, Santiago;Publisher: PANGAEAProject: EC | SUMMER (817806), EC | TRIATLAS (817578)
Physical oceanography variables and carbon remineralisation (juveniles/adults of Cyclothone species and Argyropelecus hemigymnus) were analysed during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the depth, temperature, and conductivity which were recorded from surface to a maximum depth of 2000 m using a SeaBird SBE 25plus CTD equipped with a Seabird-43 Dissolved Oxygen sensor and a Seapoint Fluorometer. Values of numerical abundance, biomass, specific ETS activity, specific respiraton and respiration flux data analyzed from Northwest Africa (20° N, 20° W) to the South of Iceland are presented. A. hemigymnus specimens were collected using a ''Mesopelagos” net (5 x7 m mouth opening, 58 m total length) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers. However, Cyclothone specimens were collected using the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS-1 m²) zooplankton net with a 0.2 mm mesh size and with several nets for collecting samples from 8 different depth layers. The Mesopelagos catches were sorted out and identified on board to the lowest possible taxon, and specimens selected for Electron Transfer System (ETS) analyses were immediately frozen in liquid nitrogen for later analysis in the laboratory. MOCNESS samples were preserved in 5% buffered formalin, and specimens were sorted out later in the laboratory. Stomiiforms respiration in the meso- and bathypelagic zones of the ocean were estimated along the transect. Abundance, biomass, specific ETS activity, specific respiration and respiration are given by layer between e.g. 100 m and 1000 m depth (MOCNESS net, 1900–1600 m, 1600–1300 m, 1300–1000 m, 1000–700 m, 700–400 m, 400–200 m, 200–100 m and 100–0 m; Mesopelagos, 1900–1200 m, 1200–800 m, 800–500 m, 500–200 m and 200–0 m).
- Other research product . 2022Open Access EnglishAuthors:Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Acher-Nicholls, Scott; Dorling, Steve R.; Reeves, Claire E.; Butler, Tim;Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Acher-Nicholls, Scott; Dorling, Steve R.; Reeves, Claire E.; Butler, Tim;Project: EC | ASIBIA (616938)
Tropospheric ozone (O3) concentrations depend on a combination of hemispheric, regional, and local-scale processes. Estimates of how much O3 is produced locally vs. transported from further afield are essential in air quality management and regulatory policies. Here, a tagged-ozone mechanism within the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to quantify the contributions to surface O3 in the UK from anthropogenic nitrogen oxide (NOx) emissions from inside and outside the UK during May–August 2015. The contribution of the different source regions to three regulatory O3 metrics is also examined. It is shown that model simulations predict the concentration and spatial distribution of surface O3 with a domain-wide mean bias of −3.7 ppbv. Anthropogenic NOx emissions from the UK and Europe account for 13 % and 16 %, respectively, of the monthly mean surface O3 in the UK, as the majority (71 %) of O3 originates from the hemispheric background. Hemispheric O3 contributes the most to concentrations in the north and the west of the UK with peaks in May, whereas European and UK contributions are most significant in the east, south-east, and London, i.e. the UK's most populated areas, intensifying towards June and July. Moreover, O3 from European sources is generally transported to the UK rather than produced in situ. It is demonstrated that more stringent emission controls over continental Europe, particularly in western Europe, would be necessary to improve the health-related metric MDA8 O3 above 50 and 60 ppbv. Emission controls over larger areas, such as the Northern Hemisphere, are instead required to lessen the impacts on ecosystems as quantified by the AOT40 metric.
- Other research product . 2022Open Access EnglishAuthors:Healy, Susan D.; Patton, B. Wren;Healy, Susan D.; Patton, B. Wren;
handle: 10023/24943
Country: United KingdomBut fish cognitive ecology did not begin in rivers and streams. Rather, one of the starting points for work on fish cognitive ecology was work done on the use of visual cues by homing pigeons. Prior to working with fish, Victoria Braithwaite helped to establish that homing pigeons rely not just on magnetic and olfactory cues but also on visual cues for successful return to their home loft. Simple, elegant experiments on homing established Victoria's ability to develop experimental manipulations to examine the role of visual cues in navigation by fish in familiar areas. This work formed the basis of a rich seam of work whereby a fish's ecology was used to propose hypotheses and predictions as to preferred cue use, and then cognitive abilities in a variety of fish species, from model systems (Atlantic salmon and sticklebacks) to the Panamanian Brachyraphis episcopi. Cognitive ecology in fish led to substantial work on fish pain and welfare, but was never left behind, with some of Victoria's last work addressed to determining the neural instantiation of cognitive variation. Publisher PDF Peer reviewed
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . 2022Open Access EnglishAuthors:Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;Project: EC | ICE2ICE (610055)
Greenland ice cores provide information about past climate. Few impurity records covering the past 2 decades exist from Greenland. Here we present results from six firn cores obtained during a 426 km long northern Greenland traverse made in 2015 between the NEEM and the EGRIP deep-drilling stations situated on the western side and eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analyzed for chemical impurities and cover time spans of 18 to 53 years (±3 years) depending on local snow accumulation that decreases from west to east. The high temporal resolution allows for annual layers and seasons to be resolved. Insoluble dust, ammonium, and calcium concentrations in the six firn cores overlap, and the seasonal cycles are also similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations, H2O2 driven by the accumulation pattern, and conductivity likely influenced by sea salt. Overall, we determine a rather constant dust flux over the period, but in the data from recent years (1998–2015) we identify an increase in large dust particles that we ascribe to an activation of local Greenland sources. We observe an expected increase in acidity and conductivity in the mid-1970s as a result of anthropogenic emissions, followed by a decrease due to mitigation. Several volcanic horizons identified in the conductivity and acidity records can be associated with eruptions in Iceland and in the Barents Sea region. From a composite ammonium record we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R=0.49).
- Other research product . Other ORP type . 2022Open Access EnglishAuthors:Galgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; +2 moreGalgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; Steinhoff, Tobias; Loiselle, Steven A.;Publisher: ZenodoProject: EC | POSEIDOMM (702747)
Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.
- Other research product . 2022Open Access EnglishAuthors:Droste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; +2 moreDroste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; Trace-Kleeberg, Sunke; Bakker, Dorothee C. E.;Project: EC | CARBOCHANGE (264879)
Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekström Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air–sea CO2 flux that can range between a strong sink (−24 mmol m−2 d−1) and a small source (3 mmol m−2 d−1) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.