Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
508 Research products, page 1 of 51

  • European Marine Science
  • Other research products
  • 2018-2022
  • EU
  • IN
  • English

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Mogollón, J. M.; Dale, A. W.; Fossing, H.; Regnier, P.;
    Project: EC | BONUS+ (217246)

    Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.

  • Open Access English
    Authors: 
    Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;
    Project: EC | EPOCA (211384)

    Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary) since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA) which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.

  • Open Access English
    Authors: 
    Tessin, Allyson; März, Christian; Kędra, Monika; Matthiessen, Jens; Morata, Nathalie; Nairn, Michael; O'Regan, Matthew; Peeken, Ilka;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | PaNDA (709175)

    The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 μmol m−2 yr−1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736–2449 μmol m−2 yr−1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin.

  • Open Access English
    Authors: 
    Van Audenhaege, Loïc; Broad, Emmeline; Hendry, Katharine R; Huvenne, Veerle A I;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | iAtlantic (818123), EC | ICY-LAB (678371)

    We used a multibeam echosounder (Reson7125) front-mounted onto the ROV Isis (Dive D333, DY081 expedition) to map the terrain of a vertical feature marking the edge of a deep-sea glacial trough (Labrador Sea, [63°51.9'N, 53°16.9'W, depth: 650 to 800 m]). After correction of the ROV navigation (i.e. merging of USBL and DVL), bathymetry [m] and backscatter [nominal unit] were extracted at a resolution of 0.3 m and different terrain descriptors were computed: Slope, Bathymetric Position Index (BPI), Terrain Ruggedness Index, Roughness, Mean and Gaussian curvatures and orientations (Northness and Eastness), at scales of 0.9, 3 and 9 m. Using a Principal Component Analysis (PCA), the terrain descriptors enabled to retrieve 4 terrain clusters and their associated confusion index, to investigate the spatial heterogeneity of the terrain. This approach also underlined the presence of geomorphic features in the wall terrain. The extraction of the backscatter intensity for the first time considering vertical terrains, opens space for further acquisition and processing development. Using photographs collected by the ROV Isis (Dive D334, DY081 expedition), epibenthic fauna was annotated. Each image was linked to a terrain cluster in the 3D space and pooled into 20-m² bins of images. A Bray-Curtis dissimilarity matrix was constructed from morphospecies abundances. This enabled to test for differences of assemblage composition among clusters. Few species appeared more abundant in particular clusters such as L. pertusa in high-roughness cluster. However, nMDS suggested differences in assemblage composition but these dissimilarities were not strongly delineated. Whereas the design of this study may have limited distinctive differences among assemblages, this shows the potential of this cost-effective method of top-down habitat mapping to be applied in undersampled benthic habitat in order to provide a priori knwoledge for defining appropriate sampling design.

  • English
    Authors: 
    Böttner, Christoph; Berndt, Christian;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | STEMM-CCS (654462)

    High-resolution 2D seismic reflection data during research cruise MSM63 in April/May 2017 onboard RV Maria S. Merian. The seismic profiles were acquired with a two-105/105-in3-GI-Gun-array shot at 210 bar every 5 seconds and a 150 m-long streamer with 96 channels and 1.5625 m channel spacing. The resulting shot point distance is approximately 8.75-12.5 m at 3.5-5 kn ship speed. The frequency range of the two-GI-Gun-array is 15-500 Hz. The processing included geometry and delay corrections, static corrections, binning to 1.5625 m and bandpass filtering with corner frequencies of 25, 45, 420, and 500 Hz. Furthermore, a normal-move-out-correction (with a constant velocity of 1488 m/s calculated from CTD measurements) was applied and the data were stacked and then migrated using a 2D Stolt algorithm (1500 m/s constant velocity model). Sub-bottom profiler data acquired during cruise MSM63 using Parasound P70 with 4 kHz as the secondary low frequency to obtain seismic images of the upper 100 m below the seafloor with very high vertical resolution (< 15 cm). We applied a frequency filter (low cut 2 kHz, high cut 6 kHz, 2 iterations) and calculated the envelope within the seismic interpretation software IHS Kingdom. Bathymetric data were acquired with the EM712 system mounted to the hull of RV Maria S. Merian. The survey was designed to provide high-resolution bathymetry with 5 x 5 m resolution. We processed the data using MB Systems software (Caress & Chayes, 2017) and included statistical evaluation of soundings that increased the signal-to-noise ratio. The sound velocity profile for multibeam processing was measured at the beginning and at the end of the cruise.

  • Open Access English
    Authors: 
    Antonova, Sofia; Sudhaus, Henriette; Strozzi, Tazio; Zwieback, Simon; Kääb, Andreas; Heim, Birgit; Langer, Moritz; Bornemann, Niko; Boike, Julia;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICEMASS (320816), NSF | Automated, High Resolutio... (1542736), NSF | The Polar Geospatial Info... (1043681)

    In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 ± 1.5 cm in the cold summer of 2013 and 4.8 ± 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 ± 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.

  • Open Access English
    Authors: 
    Westerhold, Thomas;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | EARTHSEQUENCING (617462), EC | TiPES (820970), EC | MIONIÑO (796220)

    Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.

  • Open Access English
    Authors: 
    De Deckker, Patrick; Moros, Matthias; Blanz, Thomas; Schneider, Ralph R; Barrows, Timothy T; Perner, Kerstin;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICE2ICE (610055)

    The data relate to a paper submitted to Quaternary Science Reviews. All the data support a study of the last 94 ka recorded in core MD03-2611 and an adjacent multicore MD03-MUC 3 taken on the fringe of one of the Murray Canyons offshore Kangaroo Island. Additional data pertain to core SS0206-GC15 taken offshore Victoria south of Warrnambool, but its record only spans the last 25ka. The records are at high resolution and cover a multitude of parameters. Radiocarbon dates for these cores are presented in the supplementary section of this paper.

  • Open Access English
    Authors: 
    Smith, Craig R.; Tunnicliffe, Verena; Colaco, Ana; Drazen, Jeffrey C.; Gollner, Sabine; Levin, Lisa A.; Mestre, Nélia; Metaxas, Anna; Molodtsova, Tina N.; Morato, Telmo; +3 more
    Publisher: ELSEVIER SCIENCE LONDON
    Country: Portugal
    Project: EC | ATLAS (678760), EC | SCAN-Deep (747946)

    Gordon & Betty Moore FoundationGordon and Betty Moore Foundation [5596]; Canada Research Chairs FoundationCanada Research Chairs; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant [747946]; Fundacao para a Ciencia e Tecnologia I.P. Portugal (FCT); Direcao-Geral de Politica do Mar (DGPM) [2/2017/001-MiningImpact 2]; FCTPortuguese Foundation for Science and TechnologyEuropean Commission [CEECIND005262017, UID/MAR/00350/2013, IF/01194/2013, IF/00029/2014/CP1230/CT0002, Mining2/0005/2017]; RF State Assignment [0149-2019-0009]; Horizon 2020 Agricultural Interoperability and Analysis System (ATLAS) projects [678760]; JM Kaplan Fund; National Science FoundationNational Science Foundation (NSF) [OCE 1634172]; JPI Oceans project Mining Impact -Environmental Impacts and Risks of Deep-Sea Mining Aug 2018-Feb 2022 (NWO-ALW) [856.18.001] info:eu-repo/semantics/publishedVersion

  • Open Access English
    Authors: 
    Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 more
    Project: EC | EPOCA (211384), EC | MEECE (212085)

    Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
508 Research products, page 1 of 51
  • Open Access English
    Authors: 
    Mogollón, J. M.; Dale, A. W.; Fossing, H.; Regnier, P.;
    Project: EC | BONUS+ (217246)

    Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.

  • Open Access English
    Authors: 
    Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;
    Project: EC | EPOCA (211384)

    Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary) since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA) which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.

  • Open Access English
    Authors: 
    Tessin, Allyson; März, Christian; Kędra, Monika; Matthiessen, Jens; Morata, Nathalie; Nairn, Michael; O'Regan, Matthew; Peeken, Ilka;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | PaNDA (709175)

    The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 μmol m−2 yr−1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736–2449 μmol m−2 yr−1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin.

  • Open Access English
    Authors: 
    Van Audenhaege, Loïc; Broad, Emmeline; Hendry, Katharine R; Huvenne, Veerle A I;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | iAtlantic (818123), EC | ICY-LAB (678371)

    We used a multibeam echosounder (Reson7125) front-mounted onto the ROV Isis (Dive D333, DY081 expedition) to map the terrain of a vertical feature marking the edge of a deep-sea glacial trough (Labrador Sea, [63°51.9'N, 53°16.9'W, depth: 650 to 800 m]). After correction of the ROV navigation (i.e. merging of USBL and DVL), bathymetry [m] and backscatter [nominal unit] were extracted at a resolution of 0.3 m and different terrain descriptors were computed: Slope, Bathymetric Position Index (BPI), Terrain Ruggedness Index, Roughness, Mean and Gaussian curvatures and orientations (Northness and Eastness), at scales of 0.9, 3 and 9 m. Using a Principal Component Analysis (PCA), the terrain descriptors enabled to retrieve 4 terrain clusters and their associated confusion index, to investigate the spatial heterogeneity of the terrain. This approach also underlined the presence of geomorphic features in the wall terrain. The extraction of the backscatter intensity for the first time considering vertical terrains, opens space for further acquisition and processing development. Using photographs collected by the ROV Isis (Dive D334, DY081 expedition), epibenthic fauna was annotated. Each image was linked to a terrain cluster in the 3D space and pooled into 20-m² bins of images. A Bray-Curtis dissimilarity matrix was constructed from morphospecies abundances. This enabled to test for differences of assemblage composition among clusters. Few species appeared more abundant in particular clusters such as L. pertusa in high-roughness cluster. However, nMDS suggested differences in assemblage composition but these dissimilarities were not strongly delineated. Whereas the design of this study may have limited distinctive differences among assemblages, this shows the potential of this cost-effective method of top-down habitat mapping to be applied in undersampled benthic habitat in order to provide a priori knwoledge for defining appropriate sampling design.

  • English
    Authors: 
    Böttner, Christoph; Berndt, Christian;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | STEMM-CCS (654462)

    High-resolution 2D seismic reflection data during research cruise MSM63 in April/May 2017 onboard RV Maria S. Merian. The seismic profiles were acquired with a two-105/105-in3-GI-Gun-array shot at 210 bar every 5 seconds and a 150 m-long streamer with 96 channels and 1.5625 m channel spacing. The resulting shot point distance is approximately 8.75-12.5 m at 3.5-5 kn ship speed. The frequency range of the two-GI-Gun-array is 15-500 Hz. The processing included geometry and delay corrections, static corrections, binning to 1.5625 m and bandpass filtering with corner frequencies of 25, 45, 420, and 500 Hz. Furthermore, a normal-move-out-correction (with a constant velocity of 1488 m/s calculated from CTD measurements) was applied and the data were stacked and then migrated using a 2D Stolt algorithm (1500 m/s constant velocity model). Sub-bottom profiler data acquired during cruise MSM63 using Parasound P70 with 4 kHz as the secondary low frequency to obtain seismic images of the upper 100 m below the seafloor with very high vertical resolution (< 15 cm). We applied a frequency filter (low cut 2 kHz, high cut 6 kHz, 2 iterations) and calculated the envelope within the seismic interpretation software IHS Kingdom. Bathymetric data were acquired with the EM712 system mounted to the hull of RV Maria S. Merian. The survey was designed to provide high-resolution bathymetry with 5 x 5 m resolution. We processed the data using MB Systems software (Caress & Chayes, 2017) and included statistical evaluation of soundings that increased the signal-to-noise ratio. The sound velocity profile for multibeam processing was measured at the beginning and at the end of the cruise.

  • Open Access English
    Authors: 
    Antonova, Sofia; Sudhaus, Henriette; Strozzi, Tazio; Zwieback, Simon; Kääb, Andreas; Heim, Birgit; Langer, Moritz; Bornemann, Niko; Boike, Julia;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICEMASS (320816), NSF | Automated, High Resolutio... (1542736), NSF | The Polar Geospatial Info... (1043681)

    In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 ± 1.5 cm in the cold summer of 2013 and 4.8 ± 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 ± 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.

  • Open Access English
    Authors: 
    Westerhold, Thomas;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | EARTHSEQUENCING (617462), EC | TiPES (820970), EC | MIONIÑO (796220)

    Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.

  • Open Access English
    Authors: 
    De Deckker, Patrick; Moros, Matthias; Blanz, Thomas; Schneider, Ralph R; Barrows, Timothy T; Perner, Kerstin;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICE2ICE (610055)

    The data relate to a paper submitted to Quaternary Science Reviews. All the data support a study of the last 94 ka recorded in core MD03-2611 and an adjacent multicore MD03-MUC 3 taken on the fringe of one of the Murray Canyons offshore Kangaroo Island. Additional data pertain to core SS0206-GC15 taken offshore Victoria south of Warrnambool, but its record only spans the last 25ka. The records are at high resolution and cover a multitude of parameters. Radiocarbon dates for these cores are presented in the supplementary section of this paper.

  • Open Access English
    Authors: 
    Smith, Craig R.; Tunnicliffe, Verena; Colaco, Ana; Drazen, Jeffrey C.; Gollner, Sabine; Levin, Lisa A.; Mestre, Nélia; Metaxas, Anna; Molodtsova, Tina N.; Morato, Telmo; +3 more
    Publisher: ELSEVIER SCIENCE LONDON
    Country: Portugal
    Project: EC | ATLAS (678760), EC | SCAN-Deep (747946)

    Gordon & Betty Moore FoundationGordon and Betty Moore Foundation [5596]; Canada Research Chairs FoundationCanada Research Chairs; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant [747946]; Fundacao para a Ciencia e Tecnologia I.P. Portugal (FCT); Direcao-Geral de Politica do Mar (DGPM) [2/2017/001-MiningImpact 2]; FCTPortuguese Foundation for Science and TechnologyEuropean Commission [CEECIND005262017, UID/MAR/00350/2013, IF/01194/2013, IF/00029/2014/CP1230/CT0002, Mining2/0005/2017]; RF State Assignment [0149-2019-0009]; Horizon 2020 Agricultural Interoperability and Analysis System (ATLAS) projects [678760]; JM Kaplan Fund; National Science FoundationNational Science Foundation (NSF) [OCE 1634172]; JPI Oceans project Mining Impact -Environmental Impacts and Risks of Deep-Sea Mining Aug 2018-Feb 2022 (NWO-ALW) [856.18.001] info:eu-repo/semantics/publishedVersion

  • Open Access English
    Authors: 
    Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 more
    Project: EC | EPOCA (211384), EC | MEECE (212085)

    Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.