- home
- Advanced Search
Filters
Clear AllLoading
apps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA NWO | TRAFFIC: Transatlantic fl..., FCT | CEECIND/00752/2018/CP1534/CT0011, EC | PORTWIMSAuthors: Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; +4 AuthorsGuerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Data refer to export fluxes of carbonate produced by calcifying phytoplankton (coccolithophores), and coccolith-CaCO₃ percent contribution to total carbonate flux across the tropical North Atlantic, from upwelling affected NW Africa, via three ocean sites along 12°N to the Caribbean. Sampling was undertaken by means of a spatial array of four time-series sediment traps (i.e., CB at 21°N 20°W; M1U at 12°N 23°W; M2U at 14°N 37°W; M4U at 12°N 49°W; Guerreiro et al., 2021) collecting particle fluxes in two-week intervals, from October 2012 to February 2014, allowing to track temporal changes along the southern margin of the North Atlantic central gyre. Auxiliary PIC (Particulate Inorganic Carbon) data from NASA's Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov) are also provided for the sediment sampling period at all four trap sites. Particle flux data (mg/m²/d) of CaCO₃, organic matter, particulate organic carbon (POC), biogenic silica (bSiO₂) and unspecified residual fraction are provided for sediment trap site CB.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2019 English EC | DIOLS, EC | DUSTTRAFFIC, NWO | Perturbations of System E...Bar, Marijke W.; Ullgren, Jenny E.; Thunnell, Robert C.; Wakeham, Stuart G.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.; Sinninghe Damsté, Jaap S.; Schouten, Stefan;In this study we analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the long-chain diol index (LDI) temperature proxy. For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the two other lipid-based temperature proxies TEX86 and U37K′. In addition, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In contrast, the LDI in the Cariaco Basin shows larger seasonal variation, as do the TEX86 and U37K′. Here, the LDI underestimates SST during the warmest months, which is possibly due to summer stratification and the habitat depth of the diol producers deepening to around 20–30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the diol index, as an indicator of upwelling conditions, at three sites: in the eastern Atlantic, potentially linked to Guinea Dome upwelling; in the Cariaco Basin, likely caused by seasonal upwelling; and in the Mozambique Channel, where diol index variations may be driven by upwelling from favorable winds and/or eddy migration.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::8e6a24d2d265d105d296dc6b9146a30c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::8e6a24d2d265d105d296dc6b9146a30c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2019 EnglishPANGAEA NWO | Perturbations of System E..., EC | DIOLS, EC | DUSTTRAFFICde Bar, Marijke W; Ullgren, Jenny; Thunell, Robert C; Wakeham, Stuart G; Brummer, Geert-Jan A; Stuut, Jan-Berend W; Sinninghe Damsté, Jaap S; Schouten, Stefan;In this study we have analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the Long chain Diol Index (LDI). For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the TEX86 and UK´37. However, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In the Cariaco Basin the LDI shows larger seasonal variation, as do the TEX86 and UK´37. Here, the LDI underestimates SST during the warmest months, which is likely due to summer stratification and the habitat depth of the diol producers deepening to around 20 to 30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the Diol Index, as indicator of upwelling conditions, at three sites, potentially linked to Guinea Dome upwelling (Eastern Atlantic), seasonal upwelling (Cariaco Basin) and seasonal upwelling and/or eddy migration (Mozambique Channel).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::ca0004f788d8eec2e460321fdd3c4876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::ca0004f788d8eec2e460321fdd3c4876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA NWO | TRAFFIC: Transatlantic fl..., FCT | CEECIND/00752/2018/CP1534/CT0011, EC | PORTWIMSAuthors: Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; +4 AuthorsGuerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Data refer to export fluxes of carbonate produced by calcifying phytoplankton (coccolithophores), and coccolith-CaCO₃ percent contribution to total carbonate flux across the tropical North Atlantic, from upwelling affected NW Africa, via three ocean sites along 12°N to the Caribbean. Sampling was undertaken by means of a spatial array of four time-series sediment traps (i.e., CB at 21°N 20°W; M1U at 12°N 23°W; M2U at 14°N 37°W; M4U at 12°N 49°W; Guerreiro et al., 2021) collecting particle fluxes in two-week intervals, from October 2012 to February 2014, allowing to track temporal changes along the southern margin of the North Atlantic central gyre. Auxiliary PIC (Particulate Inorganic Carbon) data from NASA's Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov) are also provided for the sediment sampling period at all four trap sites. Particle flux data (mg/m²/d) of CaCO₃, organic matter, particulate organic carbon (POC), biogenic silica (bSiO₂) and unspecified residual fraction are provided for sediment trap site CB.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2019 English EC | DIOLS, EC | DUSTTRAFFIC, NWO | Perturbations of System E...Bar, Marijke W.; Ullgren, Jenny E.; Thunnell, Robert C.; Wakeham, Stuart G.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.; Sinninghe Damsté, Jaap S.; Schouten, Stefan;In this study we analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the long-chain diol index (LDI) temperature proxy. For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the two other lipid-based temperature proxies TEX86 and U37K′. In addition, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In contrast, the LDI in the Cariaco Basin shows larger seasonal variation, as do the TEX86 and U37K′. Here, the LDI underestimates SST during the warmest months, which is possibly due to summer stratification and the habitat depth of the diol producers deepening to around 20–30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the diol index, as an indicator of upwelling conditions, at three sites: in the eastern Atlantic, potentially linked to Guinea Dome upwelling; in the Cariaco Basin, likely caused by seasonal upwelling; and in the Mozambique Channel, where diol index variations may be driven by upwelling from favorable winds and/or eddy migration.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::8e6a24d2d265d105d296dc6b9146a30c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::8e6a24d2d265d105d296dc6b9146a30c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2019 EnglishPANGAEA NWO | Perturbations of System E..., EC | DIOLS, EC | DUSTTRAFFICde Bar, Marijke W; Ullgren, Jenny; Thunell, Robert C; Wakeham, Stuart G; Brummer, Geert-Jan A; Stuut, Jan-Berend W; Sinninghe Damsté, Jaap S; Schouten, Stefan;In this study we have analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the Long chain Diol Index (LDI). For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the TEX86 and UK´37. However, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In the Cariaco Basin the LDI shows larger seasonal variation, as do the TEX86 and UK´37. Here, the LDI underestimates SST during the warmest months, which is likely due to summer stratification and the habitat depth of the diol producers deepening to around 20 to 30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the Diol Index, as indicator of upwelling conditions, at three sites, potentially linked to Guinea Dome upwelling (Eastern Atlantic), seasonal upwelling (Cariaco Basin) and seasonal upwelling and/or eddy migration (Mozambique Channel).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::ca0004f788d8eec2e460321fdd3c4876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::ca0004f788d8eec2e460321fdd3c4876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu