- home
- Advanced Search
19 Research products, page 1 of 2
Loading
- Other research product . 2009Open AccessAuthors:Boike, Julia; Abramova, K.; Bolshiyanov, D. Y.; Grigoriev, M. N.; Herzschuh, Ulrike; Kattner, Gerhard; Knoblauch, C.; Kutzbach, L.; Mollenhauer, Gesine; Schneider, Waldemar;Boike, Julia; Abramova, K.; Bolshiyanov, D. Y.; Grigoriev, M. N.; Herzschuh, Ulrike; Kattner, Gerhard; Knoblauch, C.; Kutzbach, L.; Mollenhauer, Gesine; Schneider, Waldemar;Publisher: Alfred Wegener Institute for Polar and Marine ResearchCountry: Germany
- Other research product . 2021Open Access EnglishAuthors:Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;Project: EC | ICE2ICE (610055)
This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
- Other research product . 2007Open AccessAuthors:Kirillov, S.;Kirillov, S.;Publisher: Alfred Wegener Institute for Polar and Marine Research & German Society of Polar ResearchCountry: Germany
- Other research product . 2006Open AccessAuthors:Polyakova, Y. I.; Klyuvtkina, T. S.; Novichkova, E. A.; Bauch, H. A.; Kassens, Heidemarie;Polyakova, Y. I.; Klyuvtkina, T. S.; Novichkova, E. A.; Bauch, H. A.; Kassens, Heidemarie;Publisher: Alfred Wegener Institute for Polar and Marine Research & German Society of Polar ResearchCountry: Germany
- Other research product . 2018Open Access EnglishAuthors:Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf;Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf;Project: EC | PETA-CARB (338335)
Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m−2 and 1.8 kg N m−2 and for Bykovsky Peninsula 25.9 kg C m−2 and 2.2 kg N m−2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10–0.57 mm yr−1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m−2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.
- Other research product . 2018Open AccessAuthors:Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; +13 moreChadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.;Project: EC | PAGE21 (282700)
It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
- Other research product . 2018Open Access EnglishAuthors:Schirrmeister, Lutz; Schwamborn, Georg; Overduin, Pier Paul; Strauss, Jens; Fuchs, Margret C.; Grigoriev, Mikhail; Yakshina, Irina; Rethemeyer, Janet; Dietze, Elisabeth; Wetterich, Sebastian;Schirrmeister, Lutz; Schwamborn, Georg; Overduin, Pier Paul; Strauss, Jens; Fuchs, Margret C.; Grigoriev, Mikhail; Yakshina, Irina; Rethemeyer, Janet; Dietze, Elisabeth; Wetterich, Sebastian;Project: EC | PETA-CARB (338335)
The composition of perennially frozen deposits holds information on the palaeo-environment during and following deposition. In this study, we investigate late Pleistocene permafrost at the western coast of the Buor Khaya Peninsula in the south-central Laptev Sea (Siberia), namely the prominent eastern Siberian Yedoma Ice Complex (IC). Two Yedoma IC exposures and one drill core were studied for cryolithological (i.e. ice and sediment features), geochemical, and geochronological parameters. Borehole temperatures were measured for 3 years to capture the current thermal state of permafrost. The studied sequences were composed of ice-oversaturated silts and fine-grained sands with considerable amounts of organic matter (0.2 to 24 wt %). Syngenetic ice wedges intersect the frozen deposits. The deposition of the Yedoma IC, as revealed by radiocarbon dates of sedimentary organic matter, took place between 54.1 and 30.1 kyr BP. Continued Yedoma IC deposition until about 14.7 kyr BP is shown by dates from organic matter preserved in ice-wedge ice. For the lowermost and oldest Yedoma IC part, infrared-stimulated luminescence dates on feldspar show deposition ages between 51.1 ± 4.9 and 44.2 ± 3.6 kyr BP. End-member modelling was applied to grain-size-distribution data to determined sedimentation processes during Yedoma IC formation. Three to five robust end-members were detected within Yedoma IC deposits, which we interpret as different modes of primary and reworked unconfined alluvial slope and fan deposition as well as of localized eolian and fluvial sediment, which is overprinted by in situ frost weathering. The cryolithological inventory of the Yedoma IC preserved on the Buor Khaya Peninsula is closely related to the results of other IC studies, for example, to the west on the Bykovsky Peninsula, where formation time (mainly during the late Pleistocene marine isotope stages (MIS) 3 interstadial) and formation conditions were similar. Local freezing conditions on Buor Khaya, however, differed and created solute-enriched (salty) and isotopically light pore water pointing to a small talik layer and thaw-bulb freezing after deposition. Due to intense coastal erosion, the biogeochemical signature of the studied Yedoma IC represents the terrestrial end-member, and is closely related to organic matter currently being deposited in the marine realm of the Laptev Sea shelf.
- Other research product . Other ORP type . 2015Open AccessAuthors:Camara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; +8 moreCamara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; Havlik, P.; Pirker, J.; Kraxner, F.; Obersteiner, M.; Kapos, V.; Affonso, A.; Espindola, G.; Bocqueho, G.;Publisher: INPE, IPEA, IIASA, UNEP-WCMCCountries: Germany, Austria
- Other research product . 2010Open AccessAuthors:Stocker-Waldhuber, Martin;Stocker-Waldhuber, Martin;Publisher: Institut für Meteorologie und Geophysik der Universität InnsbruckCountry: Germany
- Other research product . 2003Open AccessAuthors:Burkard, R.;Burkard, R.;Publisher: PANGAEACountry: GermanyProject: SNSF | The Role of Cloud and Fog... (68051)
19 Research products, page 1 of 2
Loading
- Other research product . 2009Open AccessAuthors:Boike, Julia; Abramova, K.; Bolshiyanov, D. Y.; Grigoriev, M. N.; Herzschuh, Ulrike; Kattner, Gerhard; Knoblauch, C.; Kutzbach, L.; Mollenhauer, Gesine; Schneider, Waldemar;Boike, Julia; Abramova, K.; Bolshiyanov, D. Y.; Grigoriev, M. N.; Herzschuh, Ulrike; Kattner, Gerhard; Knoblauch, C.; Kutzbach, L.; Mollenhauer, Gesine; Schneider, Waldemar;Publisher: Alfred Wegener Institute for Polar and Marine ResearchCountry: Germany
- Other research product . 2021Open Access EnglishAuthors:Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;Project: EC | ICE2ICE (610055)
This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
- Other research product . 2007Open AccessAuthors:Kirillov, S.;Kirillov, S.;Publisher: Alfred Wegener Institute for Polar and Marine Research & German Society of Polar ResearchCountry: Germany
- Other research product . 2006Open AccessAuthors:Polyakova, Y. I.; Klyuvtkina, T. S.; Novichkova, E. A.; Bauch, H. A.; Kassens, Heidemarie;Polyakova, Y. I.; Klyuvtkina, T. S.; Novichkova, E. A.; Bauch, H. A.; Kassens, Heidemarie;Publisher: Alfred Wegener Institute for Polar and Marine Research & German Society of Polar ResearchCountry: Germany
- Other research product . 2018Open Access EnglishAuthors:Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf;Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf;Project: EC | PETA-CARB (338335)
Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m−2 and 1.8 kg N m−2 and for Bykovsky Peninsula 25.9 kg C m−2 and 2.2 kg N m−2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10–0.57 mm yr−1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m−2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.
- Other research product . 2018Open AccessAuthors:Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; +13 moreChadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.;Project: EC | PAGE21 (282700)
It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
- Other research product . 2018Open Access EnglishAuthors:Schirrmeister, Lutz; Schwamborn, Georg; Overduin, Pier Paul; Strauss, Jens; Fuchs, Margret C.; Grigoriev, Mikhail; Yakshina, Irina; Rethemeyer, Janet; Dietze, Elisabeth; Wetterich, Sebastian;Schirrmeister, Lutz; Schwamborn, Georg; Overduin, Pier Paul; Strauss, Jens; Fuchs, Margret C.; Grigoriev, Mikhail; Yakshina, Irina; Rethemeyer, Janet; Dietze, Elisabeth; Wetterich, Sebastian;Project: EC | PETA-CARB (338335)
The composition of perennially frozen deposits holds information on the palaeo-environment during and following deposition. In this study, we investigate late Pleistocene permafrost at the western coast of the Buor Khaya Peninsula in the south-central Laptev Sea (Siberia), namely the prominent eastern Siberian Yedoma Ice Complex (IC). Two Yedoma IC exposures and one drill core were studied for cryolithological (i.e. ice and sediment features), geochemical, and geochronological parameters. Borehole temperatures were measured for 3 years to capture the current thermal state of permafrost. The studied sequences were composed of ice-oversaturated silts and fine-grained sands with considerable amounts of organic matter (0.2 to 24 wt %). Syngenetic ice wedges intersect the frozen deposits. The deposition of the Yedoma IC, as revealed by radiocarbon dates of sedimentary organic matter, took place between 54.1 and 30.1 kyr BP. Continued Yedoma IC deposition until about 14.7 kyr BP is shown by dates from organic matter preserved in ice-wedge ice. For the lowermost and oldest Yedoma IC part, infrared-stimulated luminescence dates on feldspar show deposition ages between 51.1 ± 4.9 and 44.2 ± 3.6 kyr BP. End-member modelling was applied to grain-size-distribution data to determined sedimentation processes during Yedoma IC formation. Three to five robust end-members were detected within Yedoma IC deposits, which we interpret as different modes of primary and reworked unconfined alluvial slope and fan deposition as well as of localized eolian and fluvial sediment, which is overprinted by in situ frost weathering. The cryolithological inventory of the Yedoma IC preserved on the Buor Khaya Peninsula is closely related to the results of other IC studies, for example, to the west on the Bykovsky Peninsula, where formation time (mainly during the late Pleistocene marine isotope stages (MIS) 3 interstadial) and formation conditions were similar. Local freezing conditions on Buor Khaya, however, differed and created solute-enriched (salty) and isotopically light pore water pointing to a small talik layer and thaw-bulb freezing after deposition. Due to intense coastal erosion, the biogeochemical signature of the studied Yedoma IC represents the terrestrial end-member, and is closely related to organic matter currently being deposited in the marine realm of the Laptev Sea shelf.
- Other research product . Other ORP type . 2015Open AccessAuthors:Camara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; +8 moreCamara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; Havlik, P.; Pirker, J.; Kraxner, F.; Obersteiner, M.; Kapos, V.; Affonso, A.; Espindola, G.; Bocqueho, G.;Publisher: INPE, IPEA, IIASA, UNEP-WCMCCountries: Germany, Austria
- Other research product . 2010Open AccessAuthors:Stocker-Waldhuber, Martin;Stocker-Waldhuber, Martin;Publisher: Institut für Meteorologie und Geophysik der Universität InnsbruckCountry: Germany
- Other research product . 2003Open AccessAuthors:Burkard, R.;Burkard, R.;Publisher: PANGAEACountry: GermanyProject: SNSF | The Role of Cloud and Fog... (68051)