- home
- Advanced Search
Loading
apps Other research product2009 GermanyAlfred Wegener Institute for Polar and Marine Research Boike, Julia; Abramova, K.; Bolshiyanov, D. Y.; Grigoriev, M. N.; Herzschuh, Ulrike; Kattner, Gerhard; Knoblauch, C.; Kutzbach, L.; Mollenhauer, Gesine; Schneider, Waldemar;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::71514bfb6356f669818955f267d813ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::71514bfb6356f669818955f267d813ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2009 GermanyPANGAEA EC | EPOCAAuthors: Gao, K.;Gao, K.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::427a6c55aca5eec3845d0edcbb5aa9af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::427a6c55aca5eec3845d0edcbb5aa9af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2019 English NSF | Collaborative Research: A..., NSERC, NWO | Perturbations of System E...Authors: Fletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; +3 AuthorsFletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; Rybczynski, Natalia; Gosse, John C.; Ballantyne, Ashley P.;The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intriguing, but not fully understood, feature of the early to mid-Pliocene climate is the amplified Arctic temperature response and its impact on Arctic ecosystems. Only the most recent models appear to correctly estimate the degree of warming in the Pliocene Arctic and validation of the currently proposed feedbacks is limited by scarce terrestrial records of climate and environment. Here we reconstruct the summer temperature and fire regime from a subfossil fen-peat deposit on west–central Ellesmere Island, Canada, that has been chronologically constrained using cosmogenic nuclide burial dating to 3.9+1.5/-0.5 Ma. The estimate for average mean summer temperature is 15.4±0.8 ∘C using specific bacterial membrane lipids, i.e., branched glycerol dialkyl glycerol tetraethers. This is above the proposed threshold that predicts a substantial increase in wildfire in the modern high latitudes. Macro-charcoal was present in all samples from this Pliocene section with notably higher charcoal concentration in the upper part of the sequence. This change in charcoal was synchronous with a change in vegetation that included an increase in abundance of fire-promoting Pinus and Picea. Paleo-vegetation reconstructions are consistent with warm summer temperatures, relatively low summer precipitation and an incidence of fire comparable to fire-adapted boreal forests of North America and central Siberia. To our knowledge, this site provides the northernmost evidence of fire during the Pliocene. It suggests that ecosystem productivity was greater than in the present day, providing fuel for wildfires, and that the climate was conducive to the ignition of fire during this period. The results reveal that interactions between paleo-vegetation and paleoclimate were mediated by fire in the High Arctic during the Pliocene, even though CO2 concentrations were similar to modern values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2021 English EC | ICE2ICEPlach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA Authors: Schirrmeister, Lutz; Herzschuh, Ulrike; Pestryakova, Luidmila A; Wetterich, Sebastian; +6 AuthorsSchirrmeister, Lutz; Herzschuh, Ulrike; Pestryakova, Luidmila A; Wetterich, Sebastian; Bobrov, Anatoly A; Frolova, Larisa A; Ushnitskaya, Lena A; Levina, Sardana N; Schneider, Andrea; Nigamatzyanova, Gulnara R;Patterned ground of the polygonal tundra yields sensitive indicators of environmental and climate change. Polygon ponds, mires and cryosoils are typical components of Arctic Siberian wetlands underlain by permafrost.Field studies of recent environmental dynamics were carried out in the Indigirka lowland in summer 2011 and 2012. Using a multidisciplinary approach, several stages of polygonal systems were studied as modern tundra habitats in the surrounding of the WWF station Kytalyk at the Berelekh River, a tributary of the Indigirka River. The floral and faunal associations of the polygonal tundra landscape were described. Ecological, hydrological, meteorological, limnological and cryological features were analyzed in order to evaluate modern environmental conditions and their essential controlling parameters. A monitoring program was carried out to measure changes of air, water and ground temperatures as well as water conductivity, water level and soil moisture and to collect water, diatom, zooplankton, zoobenthos, tecamoebae, phytoplankton and ostracod samples. These data sets contain environmental field data, logger data, various ecological data, and analyses of sediments and water.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::8ab94aabf1f7a9bb6f9369de8c7b1630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::8ab94aabf1f7a9bb6f9369de8c7b1630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2007 GermanyAlfred Wegener Institute for Polar and Marine Research & German Society of Polar Research Authors: Kirillov, S.;Kirillov, S.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::272ba178a9dee8c890ab95d05a1ce374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::272ba178a9dee8c890ab95d05a1ce374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2006 GermanyAlfred Wegener Institute for Polar and Marine Research & German Society of Polar Research Polyakova, Y. I.; Klyuvtkina, T. S.; Novichkova, E. A.; Bauch, H. A.; Kassens, Heidemarie;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d85cbb11ef2f0eaeddd7e8cd9b8d9ed0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d85cbb11ef2f0eaeddd7e8cd9b8d9ed0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 United Kingdom EnglishGeological Society of London Wang, Bangbing; Sun, Bo; Martin, Carlos; Ferraccioli, Fausto; Steinhage, Daniel; Cui, Xiangbin; Siegert, Martin J.;Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Owing to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred metres thick, extending over hundreds of square kilometres. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth–age profile at Dome A. The fabric units correlate with glacial–interglacial cycles, most noticeably revealing crystal alignment contrasts between the Eemian and the glacial episodes before and after. The anisotropy within these fabric layers has a spatial pattern determined by ice flow over subglacial topography.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 12 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type EnglishSpringer International Publishing TARA | Tara OceansCostello, Mark J.; Basher, Zeenatul; McLeod, Laura; Asaad, Irawan; Claus, Simon; Vandepitte, Leen; Yasuhara, Moriaki; Gislason, Henrik; Edwards, Martin; Appeltans, Ward; Enevoldsen, Henrik; Edgar, Graham J.; Miloslavich, Patricia; De Monte, Silvia; Pinto, Isabel Sousa; Obura, David; Bates, Amanda E.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=core_ac_uk__::1aaf87a380857ef9904c4846acb1b589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=core_ac_uk__::1aaf87a380857ef9904c4846acb1b589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | PETA-CARBFuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf;Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m−2 and 1.8 kg N m−2 and for Bykovsky Peninsula 25.9 kg C m−2 and 2.2 kg N m−2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10–0.57 mm yr−1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m−2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::60e6114e34639dd523d25de18e1259e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::60e6114e34639dd523d25de18e1259e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research product2009 GermanyAlfred Wegener Institute for Polar and Marine Research Boike, Julia; Abramova, K.; Bolshiyanov, D. Y.; Grigoriev, M. N.; Herzschuh, Ulrike; Kattner, Gerhard; Knoblauch, C.; Kutzbach, L.; Mollenhauer, Gesine; Schneider, Waldemar;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::71514bfb6356f669818955f267d813ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::71514bfb6356f669818955f267d813ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2009 GermanyPANGAEA EC | EPOCAAuthors: Gao, K.;Gao, K.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::427a6c55aca5eec3845d0edcbb5aa9af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::427a6c55aca5eec3845d0edcbb5aa9af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2019 English NSF | Collaborative Research: A..., NSERC, NWO | Perturbations of System E...Authors: Fletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; +3 AuthorsFletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; Rybczynski, Natalia; Gosse, John C.; Ballantyne, Ashley P.;The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intriguing, but not fully understood, feature of the early to mid-Pliocene climate is the amplified Arctic temperature response and its impact on Arctic ecosystems. Only the most recent models appear to correctly estimate the degree of warming in the Pliocene Arctic and validation of the currently proposed feedbacks is limited by scarce terrestrial records of climate and environment. Here we reconstruct the summer temperature and fire regime from a subfossil fen-peat deposit on west–central Ellesmere Island, Canada, that has been chronologically constrained using cosmogenic nuclide burial dating to 3.9+1.5/-0.5 Ma. The estimate for average mean summer temperature is 15.4±0.8 ∘C using specific bacterial membrane lipids, i.e., branched glycerol dialkyl glycerol tetraethers. This is above the proposed threshold that predicts a substantial increase in wildfire in the modern high latitudes. Macro-charcoal was present in all samples from this Pliocene section with notably higher charcoal concentration in the upper part of the sequence. This change in charcoal was synchronous with a change in vegetation that included an increase in abundance of fire-promoting Pinus and Picea. Paleo-vegetation reconstructions are consistent with warm summer temperatures, relatively low summer precipitation and an incidence of fire comparable to fire-adapted boreal forests of North America and central Siberia. To our knowledge, this site provides the northernmost evidence of fire during the Pliocene. It suggests that ecosystem productivity was greater than in the present day, providing fuel for wildfires, and that the climate was conducive to the ignition of fire during this period. The results reveal that interactions between paleo-vegetation and paleoclimate were mediated by fire in the High Arctic during the Pliocene, even though CO2 concentrations were similar to modern values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2021 English EC | ICE2ICEPlach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA Authors: Schirrmeister, Lutz; Herzschuh, Ulrike; Pestryakova, Luidmila A; Wetterich, Sebastian; +6 AuthorsSchirrmeister, Lutz; Herzschuh, Ulrike; Pestryakova, Luidmila A; Wetterich, Sebastian; Bobrov, Anatoly A; Frolova, Larisa A; Ushnitskaya, Lena A; Levina, Sardana N; Schneider, Andrea; Nigamatzyanova, Gulnara R;Patterned ground of the polygonal tundra yields sensitive indicators of environmental and climate change. Polygon ponds, mires and cryosoils are typical components of Arctic Siberian wetlands underlain by permafrost.Field studies of recent environmental dynamics were carried out in the Indigirka lowland in summer 2011 and 2012. Using a multidisciplinary approach, several stages of polygonal systems were studied as modern tundra habitats in the surrounding of the WWF station Kytalyk at the Berelekh River, a tributary of the Indigirka River. The floral and faunal associations of the polygonal tundra landscape were described. Ecological, hydrological, meteorological, limnological and cryological features were analyzed in order to evaluate modern environmental conditions and their essential controlling parameters. A monitoring program was carried out to measure changes of air, water and ground temperatures as well as water conductivity, water level and soil moisture and to collect water, diatom, zooplankton, zoobenthos, tecamoebae, phytoplankton and ostracod samples. These data sets contain environmental field data, logger data, various ecological data, and analyses of sediments and water.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::8ab94aabf1f7a9bb6f9369de8c7b1630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::8ab94aabf1f7a9bb6f9369de8c7b1630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2007 GermanyAlfred Wegener Institute for Polar and Marine Research & German Society of Polar Research Authors: Kirillov, S.;Kirillov, S.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::272ba178a9dee8c890ab95d05a1ce374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::272ba178a9dee8c890ab95d05a1ce374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2006 GermanyAlfred Wegener Institute for Polar and Marine Research & German Society of Polar Research Polyakova, Y. I.; Klyuvtkina, T. S.; Novichkova, E. A.; Bauch, H. A.; Kassens, Heidemarie;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d85cbb11ef2f0eaeddd7e8cd9b8d9ed0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d85cbb11ef2f0eaeddd7e8cd9b8d9ed0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 United Kingdom EnglishGeological Society of London Wang, Bangbing; Sun, Bo; Martin, Carlos; Ferraccioli, Fausto; Steinhage, Daniel; Cui, Xiangbin; Siegert, Martin J.;Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Owing to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred metres thick, extending over hundreds of square kilometres. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth–age profile at Dome A. The fabric units correlate with glacial–interglacial cycles, most noticeably revealing crystal alignment contrasts between the Eemian and the glacial episodes before and after. The anisotropy within these fabric layers has a spatial pattern determined by ice flow over subglacial topography.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 12 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type EnglishSpringer International Publishing TARA | Tara OceansCostello, Mark J.; Basher, Zeenatul; McLeod, Laura; Asaad, Irawan; Claus, Simon; Vandepitte, Leen; Yasuhara, Moriaki; Gislason, Henrik; Edwards, Martin; Appeltans, Ward; Enevoldsen, Henrik; Edgar, Graham J.; Miloslavich, Patricia; De Monte, Silvia; Pinto, Isabel Sousa; Obura, David; Bates, Amanda E.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=core_ac_uk__::1aaf87a380857ef9904c4846acb1b589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=core_ac_uk__::1aaf87a380857ef9904c4846acb1b589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | PETA-CARBFuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf;Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m−2 and 1.8 kg N m−2 and for Bykovsky Peninsula 25.9 kg C m−2 and 2.2 kg N m−2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10–0.57 mm yr−1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m−2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::60e6114e34639dd523d25de18e1259e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::60e6114e34639dd523d25de18e1259e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu