Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
23 Research products

  • European Marine Science
  • Other research products
  • Academy of Finland
  • FI
  • CH
  • English

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laine-Petäjäkangas, Anna Maria; Korrensalo, Aino; Kokkonen, Nicola A K; Tuittila, Eeva-Stiina;

    We measured the following vascular plant functional traits: plant height (cm), leaf size (LS, cm2), specific leaf area (SLA, cm2 g-1), leaf dry matter content (LDMC, mg g-1) and leaf moisture content (g g-1) from the most common species in each research unit. We measured the following Sphagnum traits: capitulum density (number of shoots cm-2), fascicle density (number cm-1), surface density (mg cm-3), capitulum dry mass (mg) and capitulum moisture content (cap_wc, g g-1). In addition, rate of net photosynthesis was measured at four light levels. The data was collected from Lakkasuo mire complex located in Southern Finland (61° 47' N; 24° 18' E). The study includes three sites called rich fen, poor fen, and bog. At each site two experimental units were established in 2000/2001: an undrained control unit and a Water level drawdown (WLD) unit that was surrounded by a 30 cm-deep ditches after a control year. Photosynthesis measurements were carried out during summer 2016, while other traits were sampled during August 2016. We measured vascular plant vegetative height (cm), leaf area (LA, cm2 leaf-1) with a leaf area scanner (LI-3000, LI-COR Inc.), leaf fresh mass and leaf dry mass after the sample was dried at 40 °C for at least 48h (mg leaf-1). Leaf dry matter content (LDMC mg g-1) was calculated from fresh and dry mass, while specific leaf area (SLA, cm2 g-1) was calculated from LA and dry mass. Leaf traits were measured from five replicate plants as an average of a sample of ten fully grown healthy leaves from each plant. Sphagnum moss traits were measured from five replicates of single-species samples. Each sample consisted of two parts: a volume-specific sample collected with a core (diameter 7 cm, area 38.5 cm2, height 3 cm) to maintain the natural density of the stand and an additional sample of ca. 10 individuals, with stems more than 5 cm at length. Before collecting the core in the field, the number of shoots was counted from a 4 × 4 cm square for capitulum density (cap_dens, number of shoots cm-2). The volume-specific sample was cleaned of litter and unwanted species before drying at 40 °C for at least 48h to determine the surface density (surf_dens, mg cm-3). The additional sample of ten moss individuals was divided into capitula and stems (4 cm below capitula). We counted the number of fascicles on the 4 cm stem segments (fasc_dens, number cm-1). The capitula were thoroughly moistened and placed on top of tissue paper for 2 minutes to drain, before weighing them for water-filled fresh mass (cap_fw, mg). The samples were dried at 60 °C for at least 48h to measure the capitulum dry masses (cap_dw, mg). The moisture contents of capitula (cap_mc, g g-1) were then calculated as the ratio of water-filled to dry mass. Height growth (mm growing season-1) was measured in the field with the modified cranked wire method (Clymo 1970) as a difference in height between the beginning (mid-May) and end (mid-October) of the growing season 2017. For both vascular plants and mosses, we measured net photosynthesis rate, with a fully controlled, flow-through gas-exchange fluorescence measurement systems (GFS-3000, Walz, Germany; LI6400, LI-COR, USA). For mosses the living apical parts (~0.5 to 1 cm) were harvested right before the measurement and placed on a custom-made cuvette. For vascular plants, leaves, or in the case of shrubs, segments of branches were enclosed within the cuvette without disturbing the connection to the rooting system. Net photosynthesis rate (A, µmol m-2 g-1 s-1) was measured at 1500, 250, 35, and 0 µmol m-2 s-1 photosynthetic photon flux density (PPFD). The cuvette conditions were kept constant (temperature 20°C, CO2 concentration 400 ppm, flow rate 500, impeller in level 5). Relative humidity (Rh) of incoming air was set to 40% for vascular plants and 60% for mosses; for mosses this setting retained the cuvette Rh at around 80%. The setting enabled mosses to remain moist to ensure photosynthesis but protected the device from excess moisture. The data was collected to find out the impact of long-term WLD on functional traits of vascular plants and mosses, and how this impact is modulated by nutrient status (rich fen, poor fen, bog). We first assess (i) how peatland species differ in their traits and their intraspecific trait variability, to quantify (ii) how WLD impacts community level traits at different peatland sites.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Spilling, Kristian;

    In an enclosure experiment, we employed two levels of inorganic NP ratios (10 and 5) for three distinct plankton communities collected along the coast of central Chile (33ºS). Each combination of community and NP level was replicated three times. The experiment lasted 12 days, and the data set include inorganic nutrients (NO3, PO4, DSi), particular organic carbon (POC), nitrogen (PON) and phosphorus (POP), Chlorophyll a, a range of fluorescence based measurements such as photochemical efficiency (Fv/Fm) and community data. The primary effect of the NP treatment was related to different concentrations of NO3, which directly influenced the biomass of phytoplankton. Additionally, low inorganic NP ratio reduced the seston NP and Chl a-C ratios, and there were some effects on the plankton community composition, e.g. benefitting Synechococcus spp in some communities.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • Authors: Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah Joy; +3 Authors

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ~ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jilbert, Tom; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa; +6 Authors

    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mössbauer 57Fe spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas. Note that data for Figure 7 (Mössbauer profiles) and the PROFILE outputs presented in Figure 8 are not included in this dataset.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; +2 Authors

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Cryosphere (TC)arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Cryosphere (TC)arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laiho, Raija; Lampela, Maija; Minkkinen, Kari; Straková, Petra; +5 Authors

    We estimated fine-root biomass (FRB) and production (FRP) and their depth distribution and plant functional type (PFT) composition in four forested boreal peatland site types that varied in soil nutrient and water-table level regimes, ground vegetation and tree stand characteristics. Two were pine-dominated nutrient-poor sites (dwarf-shrub pine bog, tall-sedge pine fen) and two spruce-dominated nutrient-rich sites (Vaccinium myrtillus spruce swamp, herb-rich hardwood-spruce swamp). Measurements were done in two sites per site type: one undrained site and one site that had been drained for forestry. In each of the eight sites, we established three measurement plots. FRB was estimated by separating and visually identifying roots from soil cores extending down to 50-cm depth. The cores were taken in late August, 2016. FRP was estimated using ingrowth cores covering the same depth, and the separated roots were identified using Fourier transform infrared spectroscopy (FTIR). The ingrowth cores were incubated for two years, starting in November 2015 and ending in November 2017. Tree-stand basal area and stem volume per species, and projection cover of ground vegetation per species were determined in summer 2018. We monitored the soil water-table level and soil temperatures in 5 and 30 cm depths with dataloggers. Soil pH, bulk density, and carbon, nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, boron, zinc, and copper concentrations were measured from peat cores extending down to 50-cm depth and taken simultaneously with the FRB cores. FRB, FRP and peat properties are presented for 10-cm depth segments. FRB, FRP and peat properties are presented for 10-cm depth segments. Peat cores were taken with a box-shaped 65 mm x 37 mm peat corer, except in the wet TP site where a 60 mm x 60 mm corer was used.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; +2 Authors

    In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d−1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d−1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth System Dynamic...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth System Dynamic...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Barboza, Francisco Rafael; Kotta, Jonne; Weinberger, Florian; Jormalainen, Veijo; +14 Authors

    Data on morphological and biochemical traits of the bladderwrack Fucus vesiculosus were obtained from individuals simultaneously collected in September 2011 in 20 stations along the Baltic Sea and 4 stations in the North Sea. The individuals included in the analysis were collected at 0.5-1.0 m depth. Frond length, frond width, stipe width and number of fronds were directly determined in the field. All collected individuals were transported to the laboratory in cooler boxes at temperatures below 5 °C, then frozen at -20 °C within 12 h, and shipped to the GEOMAR-Helmholtz Centre for Ocean Research Kiel (Germany) on dry ice. Measurements of chlorophyll a and fucoxanthin in surface and tissue extracts, mannitol, phlorotannins and carbon:nitrogen ratio were performed in the laboratory (see further methodological details in the related article). The relative palatability of the algal material collected in all 24 stations was determined in palatability assays, using reconstituted algal pellets and the pan-Baltic grazer Idotea balthica. In addition to the trait information, environmental data on sea surface salinity, sea surface summer temperature, photosynthetically active radiation (PAR), wave exposure and total nitrogen have been obtained from the Swedish Meteorological and Hydrological Institute (SMHI) or local monitoring services.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mander, Ülo; Krasnova, Alisa; Escuer-Gatius, Jordi; Espenberg, Mikk; +10 Authors

    1 Study site and set-up The studied hemiboreal riparian forest is a 40-year old Filipendula type grey alder (Alnus incana (L.) Moench) forest stand grown on a former agricultural agricultural land. It is situated in the Agali Village (58o17' N; 27o17' E) in eastern Estonia within the Lake Peipsi Lowland (Varep 1964). The area is characterized by a flat relief with an average elevation of 32m a.s.l., formed from the bottom of former periglacial lake systems, it is slightly inclined (1%) towards a tributary of the Kalli River. The soil is Gleyic Luvisol. The thickness of the humus layer was 15-20 cm. The content of total carbon (TC), total nitrogen (TN), nitrate (NO3- -N), ammonia NH4+-N, Ca and Mg per dry matter in 10cm topsoil was 3.8 and 0.33 %, and 2.42, 2.89, 1487 and 283 mg kg-1, respectively, which was correspondingly 6.3, 8.3, 4.4, 3.6, 2.3, and 2.0 times more than those in 20cm deep zone. The long-term average annual precipitation of the region is 650 mm, and the average temperature is 17.0 °C in July and -6.7 °C in January. The duration of the growing season is typically 175-180 days from mid-April to October (Kupper et al. 2011). The mean height of the forest stand is 17.5 m, the mean stem diameter at breast height 15.6 cm and the growing stock 245 m3 ha−1 (based on Uri et al 2014 and Becker et al 2015). In the forest floor, the following herbs dominate: Filipendula ulmaria (L.) Maxim., Aegopodium podagraria L., Cirsium oleraceum (L.) Scop., Geum rivale L., Crepis paludosa (L.) Moench,), shrubs (Rubus idaeus L., Frangula alnus L., Daphne mezereum L.) and young trees (A. incana, Prunus padus (L.)) dominate. In moss-layer Climacium dendroides (Hedw.) F. Weber & D. Mohr, Plagiomnium spp and Rhytidiadelphus triquetrus (Hedw.) Warnst. 2 Soil flux measurements Soil fluxes were measured using 12 automatic dynamic chambers located close to each studied tree and installed in June 2017. The chambers were made from polymethyl methacrylate (Plexiglas) covered with non-transparent plastic film. Each soil chamber (volume of 0.032 m³) covered a 0.16 m² soil surface. To avoid stratification of gas inside the chamber, air with a constant flow rate of 1.8 L min-1 was circulated within a closed loop between the chamber and gas analyzer unit during the measurements by a diaphragm pump. The air sample was taken from the top of the chamber headspace and pumped back by distributing it to each side of the chamber. For the measurements, the soil chambers were closed automatically for 9 minutes each. Flushing time of the whole system with ambient air between measurement periods was 1 minute. Thus, there were approximately 12 measurements per chamber per day. A Picarro G2508 (Picarro Inc., Santa Clara, CA, USA) gas analyzer using cavity ring-down spectroscopy (CRDS) technology was used to monitor N2O gas concentrations in the frequency of approximately 1.17 measurements per second. The chambers were connected to the gas analyzer using a multiplexer. Since the 9 minutes of closing each soil chamber for measurements consisted of two minutes for stabilization the trend in the beginning and about two minutes unstable fluctuations at the end, for soil flux calculations, only 5 minutes of the linear trend of N2O concentration change has been used for soil flux calculations. After the quality checking 105,830 flux values (98.7% of total possible) of soil N2O fluxes could be used during the whole study period. 3 Stem flux measurements The tree stem fluxes were measured manually with frequency 1-2 times per week from September 2017 until December 2018. Twelve representative mature grey alder trees were selected for stem flux measurements and equipped with static closed tree stem chamber systems for stem flux measurements (Machacova et al 2016). Soil fluxes were investigated close to each selected tree. The tree chambers were installed in June 2017 in following order: at the bottom part of the tree stem (approximately 10 cm above the soil) and at 80 and 170 cm above the ground. The rectangular shape stem chambers were made of transparent plastic containers, including removable airtight lids (Lock & Lock Co Ltd, Seoul, Republic of Korea). For chamber preparation see Schindler et al. (2020). Two chambers per profile were set randomly across 180° and interconnected with tubes into one system (total volume of 0.00119 m³) covering 0.0108 m² of stem surface. A pump (model 1410VD, 12 V; Thomas GmbH, Fürstenfeldbruck, Germany) was used to homogenize the gas concentration prior to sampling. Chamber systems remained open between each sampling campaign. During 60 measurement campaigns, four gas samples (each 25 ml) were collected from each chamber system via septum in a 60 min interval: 0/60/120/180 min sequence (sampling time between 12:00 and 16:00) and stored in pre-evacuated (0.3 bar) 12 ml coated gas-tight vials (LabCo International, Ceregidion, UK). The gas samples were analysed in the laboratory at University of Tartu within a week using gas chromatograph (GC-2014; Shimadzu, Kyoto, Japan) equipped with an electron capture detector for detection of N2O and a flame ionization detector for CH4. The gas samples were injected automatically using Loftfield autosampler (Loftfield Analytics, Göttingen, Germany). For gas-chromatographical settings see Soosaar et al. (2011). 4 Soil and stem flux calculation Fluxes were quantified on a linear approach according to change of CH4 and N2O concentrations in the chamber headspace over time, using the equation according to Livingston & Hutchison (1995). Stem fluxes were quantified on a linear approach according to change of N2O concentrations in the chamber headspace over time. A data quality control was applied based on R2 values of linear fit for CO2 measurements. When the R2 value for CO2 efflux was above 0.9, the conditions inside the chamber were applicable, and the calculations for N2O gases were also accepted in spite of their R2 values. To compare the contribution of soil and stems, the stem fluxes were upscaled to hectare of ground area based on average stem diameter, tree height, stem surface area, tree density, and stand basal area estimated for each period. A cylindric shape of tree stem was assumed. To estimate average stem emissions per tree, fitted regression curves for different periods were made between the stem emissions and height of the measurements as previously done by Schindler et al. (2020). 5 Eddy covariance instrumentation Eddy-covariance system was installed on a 21 m height scaffolding tower. Fast 3-D sonic anemometer Gill HS-50 (Gill Instruments Ltd., Lymington, Hampshire, UK) was used to obtain 3 wind components. CO2 fluxes were measured using the Li-Cor 7200 analyser (Li-Cor Inc., Lincoln, NE, USA). Air was sampled synchronously with the 30 m teflon inlet tube and analyzed by a quantum cascade laser absorption spectrometer (QCLAS) (Aerodyne Research Inc., Billerica, MA, USA) for N2O concentrations. The Aerodyne QCLAS was installed in the heated and ventilated cottage near the tower base. A high-capacity free scroll vacuum pump (Agilent, Santa Clara, CA, USA) guaranteed air flow rate 15 L min-1 between the tower and gas analyzer during the measurements. Air was filtered for dust and condense water. All measurements were done at 10Hz and the gas-analyzer reported concentrations per dry air (mixing ratios). 6 Eddy-covariance flux calculation and data quality control The fluxes of N2O were calculated using the EddyPro software (v.6.0-7.0, Li-Cor) as a covariance of the gas mixing ratio with the vertical wind component over 30-minute periods. Despiking of the raw data was performed following Mauder (2013). Anemometer tilt was corrected with the double axis rotation. Linear detrending was chosen over block averaging to minimize the influence of a possible fluctuations of a gas analyser. Time lags were detected using covariance maximisation in a given time window (5±2s was chosen based on the tube length and flow rate). While WPL-correction is typically performed for the closed-path systems, we did not apply it as water correction was already performed by the Aerodyne and the software reported mixing ratios. Both low and high frequency spectral corrections were applied using fully analytic corrections (Moncrieff et al. 1997, 2004). Calculated fluxes were filtered out in case they were coming from the half-hour averaging periods with at least one of the following criteria: more than 1000 spikes, half-hourly averaged mixing ratio out of range (300-350 ppb), quality control (QC) flags higher than 7 (Foken et al, 2004). Footprint area was estimated using Kljun et al (2015) implemented in TOVI software (Li-Cor Inc.). Footprint allocation tool was implemented to flag the non-forested areas within the 90% cumulative footprint and fluxes appointed to these areas were removed from the further analysis. Storage fluxes were estimated using point concentration measurements from the eddy system, assuming the uniform change within the air column under the tower during every 30 min period (calculated in EddyPro software). In the absence of a better estimate or profile measurements, these estimates were used to correct for storage change. Total flux values that were higher than eight times the standard deviation were additionally filtered out (following Wang et al., 2013). Overall, the quality control procedures resulted in 61% data coverage. While friction velocity (u*) threshold is used to filter eddy fluxes of CO2 (Papale et al. 2006), visual inspection of the friction velocity influence on N2O fluxes demonstrated no effect. Thus, we decided not to apply it, taking into account that 1-9 QC flag system already marks the times when the turbulence is not sufficient. To obtain the continuous time-series and to enable the comparison to chamber estimates over hourly time scales, gap-filling of N2O fluxes was performed using marginal distribution sampling method implemented in ReddyProcWeb online tool (https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb) (described in detail in Wutzler et al 2018). MATLAB (ver. 2018a-b, Mathworks Inc., Natick, MA, USA) was used for all the eddy fluxes data analysis. 7 Ancillary measurements Air temperature and relative humidity were measured within the canopy at 10m height using the HC2A-S3 - Standard Meteo Probe / RS24T (Rotronic AG, Bassersdorf, Switzerland) and Campbell CR100 data logger (Campbell Scientific Inc., Logan, UT, USA). Based on these data, dew point depression was calculated to characterise chance of fog formation within the canopy. The incoming solar radiation data were obtained from the SMEAR Estonia station located at 2 km from the study site (Noe et al 201587) using the Delta-T-SPN-1 sunshine pyranometer (Delta-T Devices Ltd., Cambridge, UK). The cloudiness ratio was calculated based on radiation data. Near-ground air temperature, soil temperature (Campbell Scientific Inc.) and soil water content sensors (ML3 ThetaProbe, Delta-T Devices, Burwell, Cambridge, UK) were installed directly on the ground and 0-10 cm soil depth close to the studied tree spots. During six campaigns from August to November 2017 composite topsoil samples were taken with a soil corer from a depth of 0-10 cm for physical and chemical analysis using standard methods (APHA-AWWA-WEF, 2005).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Almén, Anna-Karin; Vehmaa, Anu; Brutemark, Andreas; Bach, Lennart Thomas; +7 Authors

    Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C : N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during 4 consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO2 concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration and dinoflagellate biomass, had a positive effect. The concentration of polyunsaturated fatty acids in the females was reflected in the eggs and had a positive effect on offspring production whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
23 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laine-Petäjäkangas, Anna Maria; Korrensalo, Aino; Kokkonen, Nicola A K; Tuittila, Eeva-Stiina;

    We measured the following vascular plant functional traits: plant height (cm), leaf size (LS, cm2), specific leaf area (SLA, cm2 g-1), leaf dry matter content (LDMC, mg g-1) and leaf moisture content (g g-1) from the most common species in each research unit. We measured the following Sphagnum traits: capitulum density (number of shoots cm-2), fascicle density (number cm-1), surface density (mg cm-3), capitulum dry mass (mg) and capitulum moisture content (cap_wc, g g-1). In addition, rate of net photosynthesis was measured at four light levels. The data was collected from Lakkasuo mire complex located in Southern Finland (61° 47' N; 24° 18' E). The study includes three sites called rich fen, poor fen, and bog. At each site two experimental units were established in 2000/2001: an undrained control unit and a Water level drawdown (WLD) unit that was surrounded by a 30 cm-deep ditches after a control year. Photosynthesis measurements were carried out during summer 2016, while other traits were sampled during August 2016. We measured vascular plant vegetative height (cm), leaf area (LA, cm2 leaf-1) with a leaf area scanner (LI-3000, LI-COR Inc.), leaf fresh mass and leaf dry mass after the sample was dried at 40 °C for at least 48h (mg leaf-1). Leaf dry matter content (LDMC mg g-1) was calculated from fresh and dry mass, while specific leaf area (SLA, cm2 g-1) was calculated from LA and dry mass. Leaf traits were measured from five replicate plants as an average of a sample of ten fully grown healthy leaves from each plant. Sphagnum moss traits were measured from five replicates of single-species samples. Each sample consisted of two parts: a volume-specific sample collected with a core (diameter 7 cm, area 38.5 cm2, height 3 cm) to maintain the natural density of the stand and an additional sample of ca. 10 individuals, with stems more than 5 cm at length. Before collecting the core in the field, the number of shoots was counted from a 4 × 4 cm square for capitulum density (cap_dens, number of shoots cm-2). The volume-specific sample was cleaned of litter and unwanted species before drying at 40 °C for at least 48h to determine the surface density (surf_dens, mg cm-3). The additional sample of ten moss individuals was divided into capitula and stems (4 cm below capitula). We counted the number of fascicles on the 4 cm stem segments (fasc_dens, number cm-1). The capitula were thoroughly moistened and placed on top of tissue paper for 2 minutes to drain, before weighing them for water-filled fresh mass (cap_fw, mg). The samples were dried at 60 °C for at least 48h to measure the capitulum dry masses (cap_dw, mg). The moisture contents of capitula (cap_mc, g g-1) were then calculated as the ratio of water-filled to dry mass. Height growth (mm growing season-1) was measured in the field with the modified cranked wire method (Clymo 1970) as a difference in height between the beginning (mid-May) and end (mid-October) of the growing season 2017. For both vascular plants and mosses, we measured net photosynthesis rate, with a fully controlled, flow-through gas-exchange fluorescence measurement systems (GFS-3000, Walz, Germany; LI6400, LI-COR, USA). For mosses the living apical parts (~0.5 to 1 cm) were harvested right before the measurement and placed on a custom-made cuvette. For vascular plants, leaves, or in the case of shrubs, segments of branches were enclosed within the cuvette without disturbing the connection to the rooting system. Net photosynthesis rate (A, µmol m-2 g-1 s-1) was measured at 1500, 250, 35, and 0 µmol m-2 s-1 photosynthetic photon flux density (PPFD). The cuvette conditions were kept constant (temperature 20°C, CO2 concentration 400 ppm, flow rate 500, impeller in level 5). Relative humidity (Rh) of incoming air was set to 40% for vascular plants and 60% for mosses; for mosses this setting retained the cuvette Rh at around 80%. The setting enabled mosses to remain moist to ensure photosynthesis but protected the device from excess moisture. The data was collected to find out the impact of long-term WLD on functional traits of vascular plants and mosses, and how this impact is modulated by nutrient status (rich fen, poor fen, bog). We first assess (i) how peatland species differ in their traits and their intraspecific trait variability, to quantify (ii) how WLD impacts community level traits at different peatland sites.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Spilling, Kristian;

    In an enclosure experiment, we employed two levels of inorganic NP ratios (10 and 5) for three distinct plankton communities collected along the coast of central Chile (33ºS). Each combination of community and NP level was replicated three times. The experiment lasted 12 days, and the data set include inorganic nutrients (NO3, PO4, DSi), particular organic carbon (POC), nitrogen (PON) and phosphorus (POP), Chlorophyll a, a range of fluorescence based measurements such as photochemical efficiency (Fv/Fm) and community data. The primary effect of the NP treatment was related to different concentrations of NO3, which directly influenced the biomass of phytoplankton. Additionally, low inorganic NP ratio reduced the seston NP and Chl a-C ratios, and there were some effects on the plankton community composition, e.g. benefitting Synechococcus spp in some communities.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • Authors: Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah Joy; +3 Authors

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ~ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jilbert, Tom; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa; +6 Authors

    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mössbauer 57Fe spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas. Note that data for Figure 7 (Mössbauer profiles) and the PROFILE outputs presented in Figure 8 are not included in this dataset.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; +2 Authors

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Cryosphere (TC)arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Cryosphere (TC)arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laiho, Raija; Lampela, Maija; Minkkinen, Kari; Straková, Petra; +5 Authors

    We estimated fine-root biomass (FRB) and production (FRP) and their depth distribution and plant functional type (PFT) composition in four forested boreal peatland site types that varied in soil nutrient and water-table level regimes, ground vegetation and tree stand characteristics. Two were pine-dominated nutrient-poor sites (dwarf-shrub pine bog, tall-sedge pine fen) and two spruce-dominated nutrient-rich sites (Vaccinium myrtillus spruce swamp, herb-rich hardwood-spruce swamp). Measurements were done in two sites per site type: one undrained site and one site that had been drained for forestry. In each of the eight sites, we established three measurement plots. FRB was estimated by separating and visually identifying roots from soil cores extending down to 50-cm depth. The cores were taken in late August, 2016. FRP was estimated using ingrowth cores covering the same depth, and the separated roots were identified using Fourier transform infrared spectroscopy (FTIR). The ingrowth cores were incubated for two years, starting in November 2015 and ending in November 2017. Tree-stand basal area and stem volume per species, and projection cover of ground vegetation per species were determined in summer 2018. We monitored the soil water-table level and soil temperatures in 5 and 30 cm depths with dataloggers. Soil pH, bulk density, and carbon, nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, boron, zinc, and copper concentrations were measured from peat cores extending down to 50-cm depth and taken simultaneously with the FRB cores. FRB, FRP and peat properties are presented for 10-cm depth segments. FRB, FRP and peat properties are presented for 10-cm depth segments. Peat cores were taken with a box-shaped 65 mm x 37 mm peat corer, except in the wet TP site where a 60 mm x 60 mm corer was used.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; +2 Authors

    In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d−1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d−1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth System Dynamic...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth System Dynamic...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Barboza, Francisco Rafael; Kotta, Jonne; Weinberger, Florian; Jormalainen, Veijo; +14 Authors

    Data on morphological and biochemical traits of the bladderwrack Fucus vesiculosus were obtained from individuals simultaneously collected in September 2011 in 20 stations along the Baltic Sea and 4 stations in the North Sea. The individuals included in the analysis were collected at 0.5-1.0 m depth. Frond length, frond width, stipe width and number of fronds were directly determined in the field. All collected individuals were transported to the laboratory in cooler boxes at temperatures below 5 °C, then frozen at -20 °C within 12 h, and shipped to the GEOMAR-Helmholtz Centre for Ocean Research Kiel (Germany) on dry ice. Measurements of chlorophyll a and fucoxanthin in surface and tissue extracts, mannitol, phlorotannins and carbon:nitrogen ratio were performed in the laboratory (see further methodological details in the related article). The relative palatability of the algal material collected in all 24 stations was determined in palatability assays, using reconstituted algal pellets and the pan-Baltic grazer Idotea balthica. In addition to the trait information, environmental data on sea surface salinity, sea surface summer temperature, photosynthetically active radiation (PAR), wave exposure and total nitrogen have been obtained from the Swedish Meteorological and Hydrological Institute (SMHI) or local monitoring services.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mander, Ülo; Krasnova, Alisa; Escuer-Gatius, Jordi; Espenberg, Mikk; +10 Authors

    1 Study site and set-up The studied hemiboreal riparian forest is a 40-year old Filipendula type grey alder (Alnus incana (L.) Moench) forest stand grown on a former agricultural agricultural land. It is situated in the Agali Village (58o17' N; 27o17' E) in eastern Estonia within the Lake Peipsi Lowland (Varep 1964). The area is characterized by a flat relief with an average elevation of 32m a.s.l., formed from the bottom of former periglacial lake systems, it is slightly inclined (1%) towards a tributary of the Kalli River. The soil is Gleyic Luvisol. The thickness of the humus layer was 15-20 cm. The content of total carbon (TC), total nitrogen (TN), nitrate (NO3- -N), ammonia NH4+-N, Ca and Mg per dry matter in 10cm topsoil was 3.8 and 0.33 %, and 2.42, 2.89, 1487 and 283 mg kg-1, respectively, which was correspondingly 6.3, 8.3, 4.4, 3.6, 2.3, and 2.0 times more than those in 20cm deep zone. The long-term average annual precipitation of the region is 650 mm, and the average temperature is 17.0 °C in July and -6.7 °C in January. The duration of the growing season is typically 175-180 days from mid-April to October (Kupper et al. 2011). The mean height of the forest stand is 17.5 m, the mean stem diameter at breast height 15.6 cm and the growing stock 245 m3 ha−1 (based on Uri et al 2014 and Becker et al 2015). In the forest floor, the following herbs dominate: Filipendula ulmaria (L.) Maxim., Aegopodium podagraria L., Cirsium oleraceum (L.) Scop., Geum rivale L., Crepis paludosa (L.) Moench,), shrubs (Rubus idaeus L., Frangula alnus L., Daphne mezereum L.) and young trees (A. incana, Prunus padus (L.)) dominate. In moss-layer Climacium dendroides (Hedw.) F. Weber & D. Mohr, Plagiomnium spp and Rhytidiadelphus triquetrus (Hedw.) Warnst. 2 Soil flux measurements Soil fluxes were measured using 12 automatic dynamic chambers located close to each studied tree and installed in June 2017. The chambers were made from polymethyl methacrylate (Plexiglas) covered with non-transparent plastic film. Each soil chamber (volume of 0.032 m³) covered a 0.16 m² soil surface. To avoid stratification of gas inside the chamber, air with a constant flow rate of 1.8 L min-1 was circulated within a closed loop between the chamber and gas analyzer unit during the measurements by a diaphragm pump. The air sample was taken from the top of the chamber headspace and pumped back by distributing it to each side of the chamber. For the measurements, the soil chambers were closed automatically for 9 minutes each. Flushing time of the whole system with ambient air between measurement periods was 1 minute. Thus, there were approximately 12 measurements per chamber per day. A Picarro G2508 (Picarro Inc., Santa Clara, CA, USA) gas analyzer using cavity ring-down spectroscopy (CRDS) technology was used to monitor N2O gas concentrations in the frequency of approximately 1.17 measurements per second. The chambers were connected to the gas analyzer using a multiplexer. Since the 9 minutes of closing each soil chamber for measurements consisted of two minutes for stabilization the trend in the beginning and about two minutes unstable fluctuations at the end, for soil flux calculations, only 5 minutes of the linear trend of N2O concentration change has been used for soil flux calculations. After the quality checking 105,830 flux values (98.7% of total possible) of soil N2O fluxes could be used during the whole study period. 3 Stem flux measurements The tree stem fluxes were measured manually with frequency 1-2 times per week from September 2017 until December 2018. Twelve representative mature grey alder trees were selected for stem flux measurements and equipped with static closed tree stem chamber systems for stem flux measurements (Machacova et al 2016). Soil fluxes were investigated close to each selected tree. The tree chambers were installed in June 2017 in following order: at the bottom part of the tree stem (approximately 10 cm above the soil) and at 80 and 170 cm above the ground. The rectangular shape stem chambers were made of transparent plastic containers, including removable airtight lids (Lock & Lock Co Ltd, Seoul, Republic of Korea). For chamber preparation see Schindler et al. (2020). Two chambers per profile were set randomly across 180° and interconnected with tubes into one system (total volume of 0.00119 m³) covering 0.0108 m² of stem surface. A pump (model 1410VD, 12 V; Thomas GmbH, Fürstenfeldbruck, Germany) was used to homogenize the gas concentration prior to sampling. Chamber systems remained open between each sampling campaign. During 60 measurement campaigns, four gas samples (each 25 ml) were collected from each chamber system via septum in a 60 min interval: 0/60/120/180 min sequence (sampling time between 12:00 and 16:00) and stored in pre-evacuated (0.3 bar) 12 ml coated gas-tight vials (LabCo International, Ceregidion, UK). The gas samples were analysed in the laboratory at University of Tartu within a week using gas chromatograph (GC-2014; Shimadzu, Kyoto, Japan) equipped with an electron capture detector for detection of N2O and a flame ionization detector for CH4. The gas samples were injected automatically using Loftfield autosampler (Loftfield Analytics, Göttingen, Germany). For gas-chromatographical settings see Soosaar et al. (2011). 4 Soil and stem flux calculation Fluxes were quantified on a linear approach according to change of CH4 and N2O concentrations in the chamber headspace over time, using the equation according to Livingston & Hutchison (1995). Stem fluxes were quantified on a linear approach according to change of N2O concentrations in the chamber headspace over time. A data quality control was applied based on R2 values of linear fit for CO2 measurements. When the R2 value for CO2 efflux was above 0.9, the conditions inside the chamber were applicable, and the calculations for N2O gases were also accepted in spite of their R2 values. To compare the contribution of soil and stems, the stem fluxes were upscaled to hectare of ground area based on average stem diameter, tree height, stem surface area, tree density, and stand basal area estimated for each period. A cylindric shape of tree stem was assumed. To estimate average stem emissions per tree, fitted regression curves for different periods were made between the stem emissions and height of the measurements as previously done by Schindler et al. (2020). 5 Eddy covariance instrumentation Eddy-covariance system was installed on a 21 m height scaffolding tower. Fast 3-D sonic anemometer Gill HS-50 (Gill Instruments Ltd., Lymington, Hampshire, UK) was used to obtain 3 wind components. CO2 fluxes were measured using the Li-Cor 7200 analyser (Li-Cor Inc., Lincoln, NE, USA). Air was sampled synchronously with the 30 m teflon inlet tube and analyzed by a quantum cascade laser absorption spectrometer (QCLAS) (Aerodyne Research Inc., Billerica, MA, USA) for N2O concentrations. The Aerodyne QCLAS was installed in the heated and ventilated cottage near the tower base. A high-capacity free scroll vacuum pump (Agilent, Santa Clara, CA, USA) guaranteed air flow rate 15 L min-1 between the tower and gas analyzer during the measurements. Air was filtered for dust and condense water. All measurements were done at 10Hz and the gas-analyzer reported concentrations per dry air (mixing ratios). 6 Eddy-covariance flux calculation and data quality control The fluxes of N2O were calculated using the EddyPro software (v.6.0-7.0, Li-Cor) as a covariance of the gas mixing ratio with the vertical wind component over 30-minute periods. Despiking of the raw data was performed following Mauder (2013). Anemometer tilt was corrected with the double axis rotation. Linear detrending was chosen over block averaging to minimize the influence of a possible fluctuations of a gas analyser. Time lags were detected using covariance maximisation in a given time window (5±2s was chosen based on the tube length and flow rate). While WPL-correction is typically performed for the closed-path systems, we did not apply it as water correction was already performed by the Aerodyne and the software reported mixing ratios. Both low and high frequency spectral corrections were applied using fully analytic corrections (Moncrieff et al. 1997, 2004). Calculated fluxes were filtered out in case they were coming from the half-hour averaging periods with at least one of the following criteria: more than 1000 spikes, half-hourly averaged mixing ratio out of range (300-350 ppb), quality control (QC) flags higher than 7 (Foken et al, 2004). Footprint area was estimated using Kljun et al (2015) implemented in TOVI software (Li-Cor Inc.). Footprint allocation tool was implemented to flag the non-forested areas within the 90% cumulative footprint and fluxes appointed to these areas were removed from the further analysis. Storage fluxes were estimated using point concentration measurements from the eddy system, assuming the uniform change within the air column under the tower during every 30 min period (calculated in EddyPro software). In the absence of a better estimate or profile measurements, these estimates were used to correct for storage change. Total flux values that were higher than eight times the standard deviation were additionally filtered out (following Wang et al., 2013). Overall, the quality control procedures resulted in 61% data coverage. While friction velocity (u*) threshold is used to filter eddy fluxes of CO2 (Papale et al. 2006), visual inspection of the friction velocity influence on N2O fluxes demonstrated no effect. Thus, we decided not to apply it, taking into account that 1-9 QC flag system already marks the times when the turbulence is not sufficient. To obtain the continuous time-series and to enable the comparison to chamber estimates over hourly time scales, gap-filling of N2O fluxes was performed using marginal distribution sampling method implemented in ReddyProcWeb online tool (https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb) (described in detail in Wutzler et al 2018). MATLAB (ver. 2018a-b, Mathworks Inc., Natick, MA, USA) was used for all the eddy fluxes data analysis. 7 Ancillary measurements Air temperature and relative humidity were measured within the canopy at 10m height using the HC2A-S3 - Standard Meteo Probe / RS24T (Rotronic AG, Bassersdorf, Switzerland) and Campbell CR100 data logger (Campbell Scientific Inc., Logan, UT, USA). Based on these data, dew point depression was calculated to characterise chance of fog formation within the canopy. The incoming solar radiation data were obtained from the SMEAR Estonia station located at 2 km from the study site (Noe et al 201587) using the Delta-T-SPN-1 sunshine pyranometer (Delta-T Devices Ltd., Cambridge, UK). The cloudiness ratio was calculated based on radiation data. Near-ground air temperature, soil temperature (Campbell Scientific Inc.) and soil water content sensors (ML3 ThetaProbe, Delta-T Devices, Burwell, Cambridge, UK) were installed directly on the ground and 0-10 cm soil depth close to the studied tree spots. During six campaigns from August to November 2017 composite topsoil samples were taken with a soil corer from a depth of 0-10 cm for physical and chemical analysis using standard methods (APHA-AWWA-WEF, 2005).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/