- home
- Advanced Search
3 Research products, page 1 of 1
Loading
- Other research product . 2020Open Access EnglishAuthors:Johansson, Sören; Höpfner, Michael; Kirner, Oliver; Wohltmann, Ingo; Bucci, Silvia; Legras, Bernard; Friedl-Vallon, Felix; Glatthor, Norbert; Kretschmer, Erik; Ungermann, Jörn; +1 moreJohansson, Sören; Höpfner, Michael; Kirner, Oliver; Wohltmann, Ingo; Bucci, Silvia; Legras, Bernard; Friedl-Vallon, Felix; Glatthor, Norbert; Kretschmer, Erik; Ungermann, Jörn; Wetzel, Gerald;Project: EC | STRATOCLIM (603557)
We present the first high-resolution measurements of pollutant trace gases in the Asian summer monsoon upper troposphere and lowermost stratosphere (UTLS) from the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the StratoClim (Stratospheric and upper tropospheric processes for better climate predictions) campaign based in Kathmandu, Nepal, 2017. Measurements of peroxyacetyl nitrate (PAN), acetylene (C2H2), and formic acid (HCOOH) show strong local enhancements up to altitudes of 16 km. More than 500 pptv of PAN, more than 200 pptv of C2H2, and more than 200 pptv of HCOOH are observed. Air masses with increased volume mixing ratios of PAN and C2H2 at altitudes up to 18 km, reaching to the lowermost stratosphere, were present at these altitudes for more than 10 d, as indicated by trajectory analysis. A local minimum of HCOOH is correlated with a previously reported maximum of ammonia (NH3), which suggests different washout efficiencies of these species in the same air masses. A backward trajectory analysis based on the models Alfred Wegener InsTitute LAgrangian Chemistry/Transport System (ATLAS) and TRACZILLA, using advanced techniques for detection of convective events, and starting at geolocations of GLORIA measurements with enhanced pollution trace gas concentrations, has been performed. The analysis shows that convective events along trajectories leading to GLORIA measurements with enhanced pollutants are located close to regions where satellite measurements by the Ozone Monitoring Instrument (OMI) indicate enhanced tropospheric columns of nitrogen dioxide (NO2) in the days prior to the observation. A comparison to the global atmospheric models Copernicus Atmosphere Monitoring Service (CAMS) and ECHAM/MESSy Atmospheric Chemistry (EMAC) has been performed. It is shown that these models are able to reproduce large-scale structures of the pollution trace gas distributions for one part of the flight, while the other part of the flight reveals large discrepancies between models and measurement. These discrepancies possibly result from convective events that are not resolved or parameterized in the models, uncertainties in the emissions of source gases, and uncertainties in the rate constants of chemical reactions.
- Other research product . 2021Open Access EnglishAuthors:Clyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; +13 moreClyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; Niemeier, Ulrike; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Schmidt, Anja; Stenke, Andrea; Sukhodolov, Timofei; Timmreck, Claudia; Toohey, Matthew; Tummon, Fiona; Zanchettin, Davide; Zhu, Yunqian; Toon, Owen B.;Project: NSF | Decadal Prediction Follow... (1430051), SNSF | SPARC International Proje... (138017), UKRI | The North Atlantic Climat... (NE/N018001/1), EC | STRATOCLIM (603557), UKRI | Reconciling Volcanic Forc... (NE/S000887/1)
As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
- Other research product . 2019Open Access EnglishAuthors:Wohltmann, Ingo; Lehmann, Ralph; Gottwald, Georg A.; Peters, Karsten; Protat, Alain; Louf, Valentin; Williams, Christopher; Feng, Wuhu; Rex, Markus;Wohltmann, Ingo; Lehmann, Ralph; Gottwald, Georg A.; Peters, Karsten; Protat, Alain; Louf, Valentin; Williams, Christopher; Feng, Wuhu; Rex, Markus;Project: EC | STRATOCLIM (603557)
We present a Lagrangian convective transport scheme developed for global chemistry and transport models, which considers the variable residence time that an air parcel spends in convection. This is particularly important for accurately simulating the tropospheric chemistry of short-lived species, e.g., for determining the time available for heterogeneous chemical processes on the surface of cloud droplets. In current Lagrangian convective transport schemes air parcels are stochastically redistributed within a fixed time step according to estimated probabilities for convective entrainment as well as the altitude of detrainment. We introduce a new scheme that extends this approach by modeling the variable time that an air parcel spends in convection by estimating vertical updraft velocities. Vertical updraft velocities are obtained by combining convective mass fluxes from meteorological analysis data with a parameterization of convective area fraction profiles. We implement two different parameterizations: a parameterization using an observed constant convective area fraction profile and a parameterization that uses randomly drawn profiles to allow for variability. Our scheme is driven by convective mass fluxes and detrainment rates that originate from an external convective parameterization, which can be obtained from meteorological analysis data or from general circulation models. We study the effect of allowing for a variable time that an air parcel spends in convection by performing simulations in which our scheme is implemented into the trajectory module of the ATLAS chemistry and transport model and is driven by the ECMWF ERA-Interim reanalysis data. In particular, we show that the redistribution of air parcels in our scheme conserves the vertical mass distribution and that the scheme is able to reproduce the convective mass fluxes and detrainment rates of ERA-Interim. We further show that the estimated vertical updraft velocities of our scheme are able to reproduce wind profiler measurements performed in Darwin, Australia, for velocities larger than 0.6 m s−1. SO2 is used as an example to show that there is a significant effect on species mixing ratios when modeling the time spent in convective updrafts compared to a redistribution of air parcels in a fixed time step. Furthermore, we perform long-time global trajectory simulations of radon-222 and compare with aircraft measurements of radon activity.
3 Research products, page 1 of 1
Loading
- Other research product . 2020Open Access EnglishAuthors:Johansson, Sören; Höpfner, Michael; Kirner, Oliver; Wohltmann, Ingo; Bucci, Silvia; Legras, Bernard; Friedl-Vallon, Felix; Glatthor, Norbert; Kretschmer, Erik; Ungermann, Jörn; +1 moreJohansson, Sören; Höpfner, Michael; Kirner, Oliver; Wohltmann, Ingo; Bucci, Silvia; Legras, Bernard; Friedl-Vallon, Felix; Glatthor, Norbert; Kretschmer, Erik; Ungermann, Jörn; Wetzel, Gerald;Project: EC | STRATOCLIM (603557)
We present the first high-resolution measurements of pollutant trace gases in the Asian summer monsoon upper troposphere and lowermost stratosphere (UTLS) from the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the StratoClim (Stratospheric and upper tropospheric processes for better climate predictions) campaign based in Kathmandu, Nepal, 2017. Measurements of peroxyacetyl nitrate (PAN), acetylene (C2H2), and formic acid (HCOOH) show strong local enhancements up to altitudes of 16 km. More than 500 pptv of PAN, more than 200 pptv of C2H2, and more than 200 pptv of HCOOH are observed. Air masses with increased volume mixing ratios of PAN and C2H2 at altitudes up to 18 km, reaching to the lowermost stratosphere, were present at these altitudes for more than 10 d, as indicated by trajectory analysis. A local minimum of HCOOH is correlated with a previously reported maximum of ammonia (NH3), which suggests different washout efficiencies of these species in the same air masses. A backward trajectory analysis based on the models Alfred Wegener InsTitute LAgrangian Chemistry/Transport System (ATLAS) and TRACZILLA, using advanced techniques for detection of convective events, and starting at geolocations of GLORIA measurements with enhanced pollution trace gas concentrations, has been performed. The analysis shows that convective events along trajectories leading to GLORIA measurements with enhanced pollutants are located close to regions where satellite measurements by the Ozone Monitoring Instrument (OMI) indicate enhanced tropospheric columns of nitrogen dioxide (NO2) in the days prior to the observation. A comparison to the global atmospheric models Copernicus Atmosphere Monitoring Service (CAMS) and ECHAM/MESSy Atmospheric Chemistry (EMAC) has been performed. It is shown that these models are able to reproduce large-scale structures of the pollution trace gas distributions for one part of the flight, while the other part of the flight reveals large discrepancies between models and measurement. These discrepancies possibly result from convective events that are not resolved or parameterized in the models, uncertainties in the emissions of source gases, and uncertainties in the rate constants of chemical reactions.
- Other research product . 2021Open Access EnglishAuthors:Clyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; +13 moreClyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; Niemeier, Ulrike; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Schmidt, Anja; Stenke, Andrea; Sukhodolov, Timofei; Timmreck, Claudia; Toohey, Matthew; Tummon, Fiona; Zanchettin, Davide; Zhu, Yunqian; Toon, Owen B.;Project: NSF | Decadal Prediction Follow... (1430051), SNSF | SPARC International Proje... (138017), UKRI | The North Atlantic Climat... (NE/N018001/1), EC | STRATOCLIM (603557), UKRI | Reconciling Volcanic Forc... (NE/S000887/1)
As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
- Other research product . 2019Open Access EnglishAuthors:Wohltmann, Ingo; Lehmann, Ralph; Gottwald, Georg A.; Peters, Karsten; Protat, Alain; Louf, Valentin; Williams, Christopher; Feng, Wuhu; Rex, Markus;Wohltmann, Ingo; Lehmann, Ralph; Gottwald, Georg A.; Peters, Karsten; Protat, Alain; Louf, Valentin; Williams, Christopher; Feng, Wuhu; Rex, Markus;Project: EC | STRATOCLIM (603557)
We present a Lagrangian convective transport scheme developed for global chemistry and transport models, which considers the variable residence time that an air parcel spends in convection. This is particularly important for accurately simulating the tropospheric chemistry of short-lived species, e.g., for determining the time available for heterogeneous chemical processes on the surface of cloud droplets. In current Lagrangian convective transport schemes air parcels are stochastically redistributed within a fixed time step according to estimated probabilities for convective entrainment as well as the altitude of detrainment. We introduce a new scheme that extends this approach by modeling the variable time that an air parcel spends in convection by estimating vertical updraft velocities. Vertical updraft velocities are obtained by combining convective mass fluxes from meteorological analysis data with a parameterization of convective area fraction profiles. We implement two different parameterizations: a parameterization using an observed constant convective area fraction profile and a parameterization that uses randomly drawn profiles to allow for variability. Our scheme is driven by convective mass fluxes and detrainment rates that originate from an external convective parameterization, which can be obtained from meteorological analysis data or from general circulation models. We study the effect of allowing for a variable time that an air parcel spends in convection by performing simulations in which our scheme is implemented into the trajectory module of the ATLAS chemistry and transport model and is driven by the ECMWF ERA-Interim reanalysis data. In particular, we show that the redistribution of air parcels in our scheme conserves the vertical mass distribution and that the scheme is able to reproduce the convective mass fluxes and detrainment rates of ERA-Interim. We further show that the estimated vertical updraft velocities of our scheme are able to reproduce wind profiler measurements performed in Darwin, Australia, for velocities larger than 0.6 m s−1. SO2 is used as an example to show that there is a significant effect on species mixing ratios when modeling the time spent in convective updrafts compared to a redistribution of air parcels in a fixed time step. Furthermore, we perform long-time global trajectory simulations of radon-222 and compare with aircraft measurements of radon activity.