- home
- Advanced Search
Loading
apps Other research productkeyboard_double_arrow_right Collection 2019 EnglishPANGAEA EC | ASSEMBLE, AKA | Changing phytoplankton co...EC| ASSEMBLE ,AKA| Changing phytoplankton community composition and its effect on biogeochemical fluxes in the Baltic SeaAuthors: Spilling, Kristian;Spilling, Kristian;In an enclosure experiment, we employed two levels of inorganic NP ratios (10 and 5) for three distinct plankton communities collected along the coast of central Chile (33ºS). Each combination of community and NP level was replicated three times. The experiment lasted 12 days, and the data set include inorganic nutrients (NO3, PO4, DSi), particular organic carbon (POC), nitrogen (PON) and phosphorus (POP), Chlorophyll a, a range of fluorescence based measurements such as photochemical efficiency (Fv/Fm) and community data. The primary effect of the NP treatment was related to different concentrations of NO3, which directly influenced the biomass of phytoplankton. Additionally, low inorganic NP ratio reduced the seston NP and Chl a-C ratios, and there were some effects on the plankton community composition, e.g. benefitting Synechococcus spp in some communities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3fe0dcc1c424886f55941346dc0155ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3fe0dcc1c424886f55941346dc0155ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | CRAG, AKA | Simulating Antarctic mari...EC| CRAG ,AKA| Simulating Antarctic marine ice sheet stability and multi-century contributions to sea level riseAuthors: Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; +2 AuthorsGladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf;Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::94ae10575dd72e9920f24f3bd651bbfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::94ae10575dd72e9920f24f3bd651bbfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English AKA | Biogeochemical links betw..., AKA | Biogeochemical links betw..., EC | EUROFLEETS2 +1 projectsAKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,AKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,EC| EUROFLEETS2 ,AKA| Nitrogen processes in the water column of the Baltic SeaMyllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna;In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d−1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d−1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::bf9fb14148bd5cae9990e681dedfb979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::bf9fb14148bd5cae9990e681dedfb979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2016 EnglishPANGAEA EC | MESOAQUA, AKA | Zooplankon responses to a...EC| MESOAQUA ,AKA| Zooplankon responses to acidification and warming in the marine environmentAlmén, Anna-Karin; Vehmaa, Anu; Brutemark, Andreas; Bach, Lennart Thomas; Lischka, Silke; Stuhr, Annegret; Furuhagen, Sara; Paul, Allanah Joy; Bermúdez Monsalve, Rafael; Riebesell, Ulf; Engström-Öst, Jonna;Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C : N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during 4 consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO2 concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration and dinoflagellate biomass, had a positive effect. The concentration of polyunsaturated fatty acids in the females was reflected in the eggs and had a positive effect on offspring production whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d215bac510f6e56c355ef45b224a5085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d215bac510f6e56c355ef45b224a5085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2017 EnglishPANGAEA AKA | Biogeochemical links betw..., AKA | Biogeochemical links betw..., EC | EUROFLEETS2 +1 projectsAKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,AKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,EC| EUROFLEETS2 ,AKA| Nitrogen processes in the water column of the Baltic SeaMyllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna;In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the Eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d-1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d-1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::41566573490a576226df4fb4600089f8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::41566573490a576226df4fb4600089f8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Collection 2019 EnglishPANGAEA EC | ASSEMBLE, AKA | Changing phytoplankton co...EC| ASSEMBLE ,AKA| Changing phytoplankton community composition and its effect on biogeochemical fluxes in the Baltic SeaAuthors: Spilling, Kristian;Spilling, Kristian;In an enclosure experiment, we employed two levels of inorganic NP ratios (10 and 5) for three distinct plankton communities collected along the coast of central Chile (33ºS). Each combination of community and NP level was replicated three times. The experiment lasted 12 days, and the data set include inorganic nutrients (NO3, PO4, DSi), particular organic carbon (POC), nitrogen (PON) and phosphorus (POP), Chlorophyll a, a range of fluorescence based measurements such as photochemical efficiency (Fv/Fm) and community data. The primary effect of the NP treatment was related to different concentrations of NO3, which directly influenced the biomass of phytoplankton. Additionally, low inorganic NP ratio reduced the seston NP and Chl a-C ratios, and there were some effects on the plankton community composition, e.g. benefitting Synechococcus spp in some communities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3fe0dcc1c424886f55941346dc0155ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3fe0dcc1c424886f55941346dc0155ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | CRAG, AKA | Simulating Antarctic mari...EC| CRAG ,AKA| Simulating Antarctic marine ice sheet stability and multi-century contributions to sea level riseAuthors: Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; +2 AuthorsGladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf;Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::94ae10575dd72e9920f24f3bd651bbfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::94ae10575dd72e9920f24f3bd651bbfb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English AKA | Biogeochemical links betw..., AKA | Biogeochemical links betw..., EC | EUROFLEETS2 +1 projectsAKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,AKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,EC| EUROFLEETS2 ,AKA| Nitrogen processes in the water column of the Baltic SeaMyllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna;In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d−1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d−1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::bf9fb14148bd5cae9990e681dedfb979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::bf9fb14148bd5cae9990e681dedfb979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2016 EnglishPANGAEA EC | MESOAQUA, AKA | Zooplankon responses to a...EC| MESOAQUA ,AKA| Zooplankon responses to acidification and warming in the marine environmentAlmén, Anna-Karin; Vehmaa, Anu; Brutemark, Andreas; Bach, Lennart Thomas; Lischka, Silke; Stuhr, Annegret; Furuhagen, Sara; Paul, Allanah Joy; Bermúdez Monsalve, Rafael; Riebesell, Ulf; Engström-Öst, Jonna;Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C : N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during 4 consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO2 concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration and dinoflagellate biomass, had a positive effect. The concentration of polyunsaturated fatty acids in the females was reflected in the eggs and had a positive effect on offspring production whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d215bac510f6e56c355ef45b224a5085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::d215bac510f6e56c355ef45b224a5085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2017 EnglishPANGAEA AKA | Biogeochemical links betw..., AKA | Biogeochemical links betw..., EC | EUROFLEETS2 +1 projectsAKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,AKA| Biogeochemical links between climate change and eutrophication in the Baltic Sea ,EC| EUROFLEETS2 ,AKA| Nitrogen processes in the water column of the Baltic SeaMyllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna;In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the Eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d-1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d-1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::41566573490a576226df4fb4600089f8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::41566573490a576226df4fb4600089f8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu