- home
- Advanced Search
Loading
description Publicationkeyboard_double_arrow_right Article 2019 United Kingdom English UKRI | Impacts of ocean acidific..., UKRI | Coral pH regulation and c..., EC | ATLASUKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles ,UKRI| Coral pH regulation and climate change: using novel tissue cultures to assess the future of key habitat forming species ,EC| ATLASLa Beur, Laura; Henry, Lea-Anne; Kazanidis, Georgios; Hennige, Sebastian; McDonald, Alison; Shaver, Michael P.; Roberts, J. Murray;The extent of marine litter and microplastic occurrence across ocean biomes and species remains poorly characterised, particularly in remote deep-water ecosystems. The present study in the East Mingulay Special Area of Conservation (a Marine Protected Area in the Sea of the Hebrides, western Scotland) used historic surveys and benthic samples to obtain baseline levels of anthropogenic debris and microparticle ingestion. Most debris identified in the MPA was fisheries-related. A total of 11% of benthic macrofauna from Mingulay Reef Area 1 and Banana Reef had ingested microplastics, with no statistically significant effect of feeding guild, station, or reef, on ingestion rates. However, the ingestion rate was highest at a station located in a topographic hollow along a gentle sloping area with strong variable ocean currents where fine-scale interactions between bathymetry and hydrography may have helped trap and focus microparticles. Raman spectroscopy of microparticles revealed several types of polymers being ingested, tentatively identified as polypropylene (PP), polyurethane (PU), polystyrene (PS), and polyethylene terephthalate (PET). Besides establishing a baseline assessment of marine litter and microparticles in a deep-water setting, the approach demonstrates the utility of using historic data and specimens collected for other purposes to expand the geographic and ecosystem coverage for larger more regional-scale and even basin-wide assessments such as those needed to inform Good Environmental Status in European waters, as called for by the Marine Strategy Framework Directive.
Frontiers in Marine ... arrow_drop_down Frontiers in Marine Science; The University of Manchester - Institutional RepositoryOther literature type . Article . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::358911a1d81dfe7cfcce9bbb6f5ac273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Frontiers in Marine Science; The University of Manchester - Institutional RepositoryOther literature type . Article . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::358911a1d81dfe7cfcce9bbb6f5ac273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France EnglishFrontiers Media S.A. EC | JERICO-NEXTEC| JERICO-NEXTBruno Ferron; Pascale Bouruet-Aubertot; Katrin Schroeder; Harry L. Bryden; Yannis Cuypers; Mireno Borghini;International audience; Recent observations from profiles of temperature and salinity in the Algerian Sea showed that salt finger mixing can significantly warm and salinify the deep waters within a period of 2 years, thereby contributing to the erosion of deep water properties formed during winter convection episodes. In this study, heat, salt, and buoyancy fluxes associated with thermohaline staircases are estimated using microstructure observations from four locations of the Western Mediterranean Sea: The Tyrrhenian Sea, the Algerian Sea, the Sardino-Balearic Sea, and the Ligurian Sea. Those fluxes are compared to the rare estimates found in the Mediterranean Sea. Microstructure data show that the temperature variance dissipation rate is one to three orders of magnitude larger in the strong steps that separate weakly stratified layers than in the layers, while the turbulent kinetic energy dissipation rate remains usually weak both in steps and layers. In the steps, the turbulent eddy diffusivity of salt is on average twice as large as that of temperature. The buoyancy flux ratio decreases with the density ratio. It is found that staircases induce a downward heat transfer rate of 46 to 103 × 109 W over the whole western basin, and a downward salt transfer rate of 4.5 to 10.3 × 103 kg s–1 between 1000 and 2000 m. This heat convergence is 2–5 times as large as the western Mediterranean geothermal heat flux in this depth range. Over the whole western basin, heat and salt convergences from salt-fingering staircases are 50% to 100% of those generated by mechanical mixing. Finally, it is found that heat and salt convergences from geothermal heating, salt-fingering and mechanical mixing can balance a deep water upwelling of 0.4 × 106 m3 s–1.
Frontiers in Marine ... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2191::19e0dd5770dcb0e76d067d32ca6415ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2191::19e0dd5770dcb0e76d067d32ca6415ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2020 France English EC | TAPASEC| TAPASPalmer, Stephanie C. J.; Gernez, Pierre M.; Thomas, Yoann; Simis, Stefan; Miller, Peter I.; Glize, Philippe; Barillé, Laurent;Aquaculture increasingly contributes to global seafood production, requiring new farm sites for continued growth. In France, oyster cultivation has conventionally taken place in the intertidal zone, where there is little or no further room for expansion. Despite interest in moving production further offshore, more information is needed regarding the biological potential for offshore oyster growth, including its spatial and temporal variability. This study shows the use of remotely-sensed chlorophyll-a and total suspended matter concentrations retrieved from the Medium Resolution Imaging Spectrometer (MERIS), and sea surface temperature from the Advanced Very High Resolution Radiometer (AVHRR), all validated using in situ matchup measurements, as input to run a Dynamic Energy Budget (DEB) Pacific oyster growth model for a study site along the French Atlantic coast (Bourgneuf Bay, France). Resulting oyster growth maps were calibrated and validated using in situ measurements of total oyster weight made throughout two growing seasons, from the intertidal zone, where cultivation currently takes place, and from experimental offshore sites, for both spat (R2 = 0.91; RMSE = 1.60 g) and adults (R2 = 0.95; RMSE = 4.34 g). Oyster growth time series are further digested into industry-relevant indicators, such as time to achieve market weight and quality index, elaborated in consultation with local producers and industry professionals, and which are also mapped. Offshore growth is found to be feasible and to be as much as two times faster than in the intertidal zone (p < 0.001). However, the potential for growth is also revealed to be highly variable across the investigated area. Mapping reveals a clear spatial gradient in production potential in the offshore environment, with the northeastern segment of the bay far better suited than the southwestern. Results also highlight the added value of spatiotemporal data, such as satellite image time series, to drive modeling in support of marine spatial planning. The current work demonstrates the feasibility and benefit of such a coupled remote sensing-modeling approach within a shellfish farming context, responding to real and current interests of oyster producers.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerFrontiers in Marine ScienceOther literature type . Article . 2020All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::d31a45128e84b79b0062480211479b98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerFrontiers in Marine ScienceOther literature type . Article . 2020All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::d31a45128e84b79b0062480211479b98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018 United Kingdom, Germany EnglishFrontiers Media S.A. EC | CACHEEC| CACHEAuthors: Trystan Sanders; Lara Schmittmann; Jennifer C. Nascimento-Schulze; Frank Melzner;Trystan Sanders; Lara Schmittmann; Jennifer C. Nascimento-Schulze; Frank Melzner;In coastal temperate regions such as the Baltic Sea, calcifying bivalves dominate benthic communities playing a vital ecological role in maintaining biodiversity and nutrient recycling. At low salinities, bivalves exhibit reduced growth and calcification rates which is thought to result from physiological constraints associated with osmotic stress. Calcification demands a considerable amount of energy in calcifying molluscs and estuarine habitats provide sub-optimal conditions for calcification due to low concentrations of calcification substrates and large variations in carbonate chemistry. Therefore, we hypothesize that slow growth rates in estuarine bivalves result from increased costs of calcification, rather than costs associated with osmotic stress. To investigate this, we estimated the cost of calcification for the first time in benthic bivalve life stages and the relative energy allocation to calcification in three Mytilus populations along the Baltic salinity gradient. Our results indicate that calcification rates are significantly reduced only in 6 psu populations compared to 11 and 16 psu populations, coinciding with ca. 2–3-fold higher calcification costs at low salinity and temperature. This suggests that reduced growth of Baltic Mytilus at low salinities results from increased calcification costs rather than osmotic stress related costs. We also reveal that shell growth (both calcification and shell organic production) demands 31–60% of available assimilated energy from food, which is significantly higher than previous estimates. Energetically expensive calcification represents a major constraint on growth of mytilids in the estuarine and coastal seas where warming, acidification and desalination are predicted over the next century.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::2a0463054f6b84a9c082ec89edfc38df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 8 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::2a0463054f6b84a9c082ec89edfc38df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 EnglishFrontiers Media S.A. UKRI | Marine LTSS: Climate Link..., EC | JERICO-NEXT, EC | EMSO-LinkUKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| JERICO-NEXT ,EC| EMSO-LinkTobias Steinhoff; Tobias Steinhoff; Thanos Gkritzalis; Siv K. Lauvset; Siv K. Lauvset; Siv K. Lauvset; Steve Jones; Steve Jones; Ute Schuster; Are Olsen; Are Olsen; Meike Becker; Meike Becker; Roberto Bozzano; Fabio Brunetti; Carolina Cantoni; Vanessa Cardin; Denis Diverrès; Björn Fiedler; Agneta Fransson; Michele Giani; Sue Hartman; Mario Hoppema; Emil Jeansson; Truls Johannessen; Truls Johannessen; Vassilis Kitidis; Arne Körtzinger; Camilla Landa; Camilla Landa; Nathalie Lefèvre; Anna Luchetta; Lieven Naudts; Philip D. Nightingale; Abdirahman M. Omar; Sara Pensieri; Benjamin Pfeil; Benjamin Pfeil; Rocío Castaño-Primo; Rocío Castaño-Primo; Gregor Rehder; Anna Rutgersson; Richard Sanders; Ingo Schewe; Giuseppe Siena; Ingunn Skjelvan; Thomas Soltwedel; Steven van Heuven; Andrew Watson;The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::c3e0554dbb1a2d0c0df02ad3f96e3ab1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::c3e0554dbb1a2d0c0df02ad3f96e3ab1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 EnglishLinnéuniversitetet, Institutionen för biologi och miljö (BOM) EC | DINO_DONEC| DINO_DONAuthors: Sörenson, Eva; Farnelid, Hanna; Lindehoff, Elin; Legrand, Catherine;Sörenson, Eva; Farnelid, Hanna; Lindehoff, Elin; Legrand, Catherine;Eutrophication coupled to climate change disturbs the balance between competition and coexistence in microbial communities including the partitioning of organic and inorganic nutrients between phytoplankton and bacteria. Competition for inorganic nutrients has been regarded as one of the drivers affecting the productivity of the eutrophied coastal Baltic Sea. Yet, it is unknown at the molecular expression level how resources are competed for, by phytoplankton and bacteria, and what impact this competition has on the community composition. Here we use metatranscriptomics and amplicon sequencing and compare known metabolic pathways of both phytoplankton and bacteria co-occurring during a summer bloom in the archipelago of Åland in the Baltic Sea to examine phytoplankton bacteria resource partitioning. The expression of selected pathways of carbon (C), nitrogen (N), and phosphorus (P) metabolism varied over time, independently, for both phytoplankton and bacteria, indicating partitioning of the available organic and inorganic resources. This occurs regardless of eukaryotic plankton growth phase (exponential or stationary), based on expression data, and microbial community composition. Further, the availability of different nutrient resources affected the functional response by the bacteria, observed as minor compositional changes, at class level, in an otherwise taxonomically stable bacterial community. Resource partitioning and functional flexibility seem necessary in order to maintain phytoplankton-bacteria interactions at stable environmental conditions. More detailed knowledge of which organisms utilize certain nutrient species are important for more accurate projections of the fate of coastal waters.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::1b9de113504dcfb01d3dd0587523f23e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::1b9de113504dcfb01d3dd0587523f23e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Germany, France, Norway, Norway, Spain, United States, France, France, Denmark, France, Netherlands English EC | BRIDGE-BS, NSF | Support for International..., EC | FutureMARESEC| BRIDGE-BS ,NSF| Support for International Ocean Science Activities Through SCOR ,EC| FutureMARESGrégoire, Marilaure; Garçon, Véronique; Garcia, Hernan; Breitburg, Denise; Isensee, Kirsten; Oschlies, Andreas; Telszewski, Maciej; Barth, Alexander; Bittig, Henry C.; Carstensen, Jacob; Carval, Thierry; Chai, Fei; Chavez, Francisco; Conley, Daniel; Coppola, Laurent; Crowe, Sean; Currie, Kim; Dai, Minhan; Deflandre, Bruno; Dewitte, Boris; Diaz, Robert; Garcia-Robledo, Emilio; Gilbert, Denis; Giorgetti, Alessandra; Glud, Ronnie; Gutierrez, Dimitri; Hosoda, Shigeki; Ishii, Masao; Jacinto, Gil; Langdon, Chris; Lauvset, Siv K.; Levin, Lisa A.; Limburg, Karin E.; Mehrtens, Hela; Montes, Ivonne; Naqvi, Wajih; Paulmier, Aurélien; Pfeil, Benjamin; Pitcher, Grant; Pouliquen, Sylvie; Rabalais, Nancy; Rabouille, Christophe; Recape, Virginie; Roman, Michaël; Rose, Kenneth; Rudnick, Daniel; Rummer, Jodie; Schmechtig, Catherine; Schmidtko, Sunke; Seibel, Brad; Slomp, Caroline; Sumalia, U. Rashid; Tanhua, Toste; Thierry, Virginie; Uchida, Hiroshi; Wanninkhof, Rik; Yasuhara, Moriaki;handle: 11250/2985210 , 10498/26452 , 20.500.12816/5071
In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO(2)DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO(2)DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO(2)DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO(2)DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O-2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O-2 will improve our understanding of the ocean O-2 budget, and allow better quantification of the Earth's carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO(2)DAT will allow scientists to fully harness the increasing volumes of O-2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO(2)DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO(2)DAT is proposed highlighting the efforts needed (e.g., in terms of human resources). All authors would like to thank IOC-UNESCO, International Ocean Carbon Coordination Project (IOCCP), NOAA, and the German SFB754. MG is funded by the Fonds National de la Recherche Scientifique (FRS-FNRS) and received fundings from the FNRS BENTHOX program grant T.1009.15, the Copernicus Marine Service (CMEMS), and the European Union's Horizon 2020 BRIDGE-BS project under grant agreement No. 101000240. MG, VG, KI, and BDew are supported by the Project CE2COAST funded by ANR (FR), BELSPO (BE), FCT (PT), IZM (LV), MI (IE), MIUR (IT), Rannis (IS), and RCN (NO) through the 2019 "Joint Transnational Call on Next Generation Climate Science in Europe for Oceans" initiated by JPI Climate and JPI Oceans. MT, KC, and VG acknowledge support from the United States National Science Foundation grant OCE-1840868 to the Scientific Committee on Oceanic Research (SCOR, United States). BoD also acknowledges support from ANID grants R20F0008-CEAZA and 1190276. This research (through VG, AP and BoD) received fundings from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 869300 (FutureMARES). CB, AP, VG, LC, BrD, VR, VT, and CS acknowledge support of the French CES ODATIS Oxygen through INSU funding. SKL acknowledges support from the Research Council of Norway (Grant No. 269753). This manuscript is a contribution to the UN Decade Global Ocean Oxygen (GOOD) Program.
OceanRep; Frontiers ... arrow_drop_down OceanRep; Frontiers in Marine ScienceArticle . 2021University of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHAL Descartes; HAL-CEA; HAL-IRDArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/2985210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 145visibility views 145 download downloads 1,389 Powered bymore_vert OceanRep; Frontiers ... arrow_drop_down OceanRep; Frontiers in Marine ScienceArticle . 2021University of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHAL Descartes; HAL-CEA; HAL-IRDArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/2985210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 EnglishFrontiers Media S.A. UKRI | Marine LTSS: Climate Link..., EC | AtlantOSUKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| AtlantOSAnne-Cathrin Wölfl; Helen Snaith; Sam Amirebrahimi; Colin W. Devey; Boris Dorschel; Vicki Ferrini; Veerle A. I. Huvenne; Martin Jakobsson; Jennifer Jencks; Gordon Johnston; Geoffroy Lamarche; Geoffroy Lamarche; Larry Mayer; David Millar; Terje Haga Pedersen; Kim Picard; Anja Reitz; Thierry Schmitt; Martin Visbeck; Pauline Weatherall; Rochelle Wigley;Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a3bbcc7e433c5f48f03fe7e251b4389a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a3bbcc7e433c5f48f03fe7e251b4389a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 Denmark, France, Spain, Norway, United Kingdom, Spain, France, Finland English EC | ASSEMBLE Plus, EC | EOSC-Life, EC | EOSC-Nordic +1 projectsEC| ASSEMBLE Plus ,EC| EOSC-Life ,EC| EOSC-Nordic ,EC| EdgeStressObst, Matthias; Exter, Katrina; Allcock, A. Louise; Arvanitidis, Christos; Axberg, Alizz; Bustamante, Maria; Cancio, Ibon; Carreira-Flores, Diego; Chatzinikolaou, Eva; Chatzigeorgiou, Giorgos; Chrismas, Nathan; Clark, Melody S.; Comtet, Thierry; Dailianis, Thanos; Davies, Neil; Deneudt, Klaas; de Cerio, Oihane Diaz; Fortič, Ana; Gerovasileiou, Vasilis; Hablützel, Pascal I.; Keklikoglou, Kleoniki; Kotoulas, Georgios; Lasota, Rafal; Leite, Barbara R.; Loisel, Stéphane; Lévêque, Laurent; Levy, Liraz; Malachowicz, Magdalena; Mavrič, Borut; Meyer, Christopher; Mortelmans, Jonas; Norkko, Joanna; Pade, Nicolas; Power, Anne Marie; Ramšak, Andreja; Reiss, Henning; Solbakken, Jostein; Staehr, Peter A.; Sundberg, Per; Thyrring, Jakob; Troncoso, Jesus S.; Viard, Frédérique; Wenne, Roman; Yperifanou, Eleni Ioanna; Zbawicka, Malgorzata; Pavloudi, Christina;handle: 11250/2733130 , 11093/2151
Marine hard-bottom communities are undergoing severe change under the influence of multiple drivers, notably climate change, extraction of natural resources, pollution and eutrophication, habitat degradation, and invasive species. Monitoring marine biodiversity in such habitats is, however, challenging as it typically involves expensive, non-standardized, and often destructive sampling methods that limit its scalability. Differences in monitoring approaches furthermore hinders inter-comparison among monitoring programs. Here, we announce a Marine Biodiversity Observation Network (MBON) consisting of Autonomous Reef Monitoring Structures (ARMS) with the aim to assess the status and changes in benthic fauna with genomic-based methods, notably DNA metabarcoding, in combination with image-based identifications. This article presents the results of a 30-month pilot phase in which we established an operational and geographically expansive ARMS-MBON. The network currently consists of 20 observatories distributed across European coastal waters and the polar regions, in which 134 ARMS have been deployed to date. Sampling takes place annually, either as short-term deployments during the summer or as long-term deployments starting in spring. The pilot phase was used to establish a common set of standards for field sampling, genetic analysis, data management, and legal compliance, which are presented here. We also tested the potential of ARMS for combining genetic and image-based identification methods in comparative studies of benthic diversity, as well as for detecting non-indigenous species. Results show that ARMS are suitable for monitoring hard-bottom environments as they provide genetic data that can be continuously enriched, re-analyzed, and integrated with conventional data to document benthic community composition and detect non-indigenous species. Finally, we provide guidelines to expand the network and present a sustainability plan as part of the European Marine Biological Resource Centre (www.embrc.eu). This ARMS-MBON network is funded by the infrastructure programs ASSEMBLE Plus (grant no. 730984) and the European Marine Biological Resource Centre, EMBRC. Both programs establish and maintain the core network and provide services and consultation for deployment, sample processing, sequencing, data management, and analysis. Funding for ARMS observatories in the North Sea Region was provided by the INTERREG project GEANS (North Sea Program of the European Regional Development Fund of the European Union) and the Swedish Agency for Marine and Water Management (grant no. 31812019), and the Flanders LifeWatch contribution (Research Foundation Flanders grant I000819N). The ARMS observatory in Roscoff also received support from the Aquanis 2.0 project (FONDATION Total). Data management and analysis was funded by Swedish LifeWatch grant from the Swedish Research council (grant no. 2017-00634) as well as the EOSC NORDIC project (grant no. 857652). Guiding documents to obtain ABS clearance for access to genetic resources were developed in the framework of projects INTERREG EBB (EAPA_501/2016) and H2020 EOSC-Life (grant no. 824087).
Recolector de Cienci... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020Data sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/2733130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 4 Powered bymore_vert Recolector de Cienci... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020Data sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/2733130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 Germany, United Kingdom EnglishFrontiers Media SA NSF | Support for International..., UKRI | RAGNARoCC: Radiatively ac..., EC | INGOSNSF| Support for International Ocean Science Activities Through SCOR ,UKRI| RAGNARoCC: Radiatively active gases from the North Atlantic Region and Climate Change ,EC| INGOSAuthors: Bange, Hermann W.; Arévalo-Martínez, Damian L.; de la Paz, Mercedes; Farías, Laura; +8 AuthorsBange, Hermann W.; Arévalo-Martínez, Damian L.; de la Paz, Mercedes; Farías, Laura; Kaiser, Jan; Kock, Annette; Law, Cliff S.; Rees, Andrew P.; Rehder, Gregor; Tortell, Philippe D.; Upstill-Goddard, Robert C.; Wilson, Samuel T.;Nitrous oxide (N2O) is an important atmospheric trace gas involved in tropospheric warming and stratospheric ozone depletion. Estimates of the global ocean contribution to N2O emissions average 21% (range: 10 to 53%). Ongoing environmental changes such as warming, deoxygenation and acidification are affecting oceanic N2O cycling and emissions to the atmosphere. International activities over the last decades aimed at improving estimates of global N2O emissions, including (i) the MarinE MethanE and NiTrous Oxide database (MEMENTO) for archiving of quality-controlled data, and (ii) a recent large-scale inter-laboratory comparison by Working Group 143 of the Scientific Committee on Ocean Research (SCOR). To reduce uncertainties in oceanic N2O emission estimates and to characterize the spatial and temporal variability in N2O distributions in a changing ocean, we propose the establishment of a harmonized N2O Observation Network (N2O-ON) combining discrete and continuous data from various platforms. The network will integrate observations obtained by calibrated techniques, using time series measurements at fixed stations and repeated hydrographic sections on voluntary observing ships and research vessels. In addition to exploiting existing oceanographic infrastructure, we propose the establishment of central calibration facilities in selected international laboratories to improve accuracy, and ensure standardization and comparability of N2O measurements. Final data products will include a harmonized global N2O concentration and emission fields for use in model validation and projections of future oceanic N2O emissions, to inform the global research community and policy makers.
OceanRep arrow_drop_down University of East Anglia digital repositoryArticle . 2019Data sources: University of East Anglia digital repositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::ac940ba9ff6e998e8476a24d522ce072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 31 Powered bymore_vert OceanRep arrow_drop_down University of East Anglia digital repositoryArticle . 2019Data sources: University of East Anglia digital repositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::ac940ba9ff6e998e8476a24d522ce072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2019 United Kingdom English UKRI | Impacts of ocean acidific..., UKRI | Coral pH regulation and c..., EC | ATLASUKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles ,UKRI| Coral pH regulation and climate change: using novel tissue cultures to assess the future of key habitat forming species ,EC| ATLASLa Beur, Laura; Henry, Lea-Anne; Kazanidis, Georgios; Hennige, Sebastian; McDonald, Alison; Shaver, Michael P.; Roberts, J. Murray;The extent of marine litter and microplastic occurrence across ocean biomes and species remains poorly characterised, particularly in remote deep-water ecosystems. The present study in the East Mingulay Special Area of Conservation (a Marine Protected Area in the Sea of the Hebrides, western Scotland) used historic surveys and benthic samples to obtain baseline levels of anthropogenic debris and microparticle ingestion. Most debris identified in the MPA was fisheries-related. A total of 11% of benthic macrofauna from Mingulay Reef Area 1 and Banana Reef had ingested microplastics, with no statistically significant effect of feeding guild, station, or reef, on ingestion rates. However, the ingestion rate was highest at a station located in a topographic hollow along a gentle sloping area with strong variable ocean currents where fine-scale interactions between bathymetry and hydrography may have helped trap and focus microparticles. Raman spectroscopy of microparticles revealed several types of polymers being ingested, tentatively identified as polypropylene (PP), polyurethane (PU), polystyrene (PS), and polyethylene terephthalate (PET). Besides establishing a baseline assessment of marine litter and microparticles in a deep-water setting, the approach demonstrates the utility of using historic data and specimens collected for other purposes to expand the geographic and ecosystem coverage for larger more regional-scale and even basin-wide assessments such as those needed to inform Good Environmental Status in European waters, as called for by the Marine Strategy Framework Directive.
Frontiers in Marine ... arrow_drop_down Frontiers in Marine Science; The University of Manchester - Institutional RepositoryOther literature type . Article . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::358911a1d81dfe7cfcce9bbb6f5ac273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Frontiers in Marine Science; The University of Manchester - Institutional RepositoryOther literature type . Article . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::358911a1d81dfe7cfcce9bbb6f5ac273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France EnglishFrontiers Media S.A. EC | JERICO-NEXTEC| JERICO-NEXTBruno Ferron; Pascale Bouruet-Aubertot; Katrin Schroeder; Harry L. Bryden; Yannis Cuypers; Mireno Borghini;International audience; Recent observations from profiles of temperature and salinity in the Algerian Sea showed that salt finger mixing can significantly warm and salinify the deep waters within a period of 2 years, thereby contributing to the erosion of deep water properties formed during winter convection episodes. In this study, heat, salt, and buoyancy fluxes associated with thermohaline staircases are estimated using microstructure observations from four locations of the Western Mediterranean Sea: The Tyrrhenian Sea, the Algerian Sea, the Sardino-Balearic Sea, and the Ligurian Sea. Those fluxes are compared to the rare estimates found in the Mediterranean Sea. Microstructure data show that the temperature variance dissipation rate is one to three orders of magnitude larger in the strong steps that separate weakly stratified layers than in the layers, while the turbulent kinetic energy dissipation rate remains usually weak both in steps and layers. In the steps, the turbulent eddy diffusivity of salt is on average twice as large as that of temperature. The buoyancy flux ratio decreases with the density ratio. It is found that staircases induce a downward heat transfer rate of 46 to 103 × 109 W over the whole western basin, and a downward salt transfer rate of 4.5 to 10.3 × 103 kg s–1 between 1000 and 2000 m. This heat convergence is 2–5 times as large as the western Mediterranean geothermal heat flux in this depth range. Over the whole western basin, heat and salt convergences from salt-fingering staircases are 50% to 100% of those generated by mechanical mixing. Finally, it is found that heat and salt convergences from geothermal heating, salt-fingering and mechanical mixing can balance a deep water upwelling of 0.4 × 106 m3 s–1.
Frontiers in Marine ... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2191::19e0dd5770dcb0e76d067d32ca6415ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2191::19e0dd5770dcb0e76d067d32ca6415ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2020 France English EC | TAPASEC| TAPASPalmer, Stephanie C. J.; Gernez, Pierre M.; Thomas, Yoann; Simis, Stefan; Miller, Peter I.; Glize, Philippe; Barillé, Laurent;Aquaculture increasingly contributes to global seafood production, requiring new farm sites for continued growth. In France, oyster cultivation has conventionally taken place in the intertidal zone, where there is little or no further room for expansion. Despite interest in moving production further offshore, more information is needed regarding the biological potential for offshore oyster growth, including its spatial and temporal variability. This study shows the use of remotely-sensed chlorophyll-a and total suspended matter concentrations retrieved from the Medium Resolution Imaging Spectrometer (MERIS), and sea surface temperature from the Advanced Very High Resolution Radiometer (AVHRR), all validated using in situ matchup measurements, as input to run a Dynamic Energy Budget (DEB) Pacific oyster growth model for a study site along the French Atlantic coast (Bourgneuf Bay, France). Resulting oyster growth maps were calibrated and validated using in situ measurements of total oyster weight made throughout two growing seasons, from the intertidal zone, where cultivation currently takes place, and from experimental offshore sites, for both spat (R2 = 0.91; RMSE = 1.60 g) and adults (R2 = 0.95; RMSE = 4.34 g). Oyster growth time series are further digested into industry-relevant indicators, such as time to achieve market weight and quality index, elaborated in consultation with local producers and industry professionals, and which are also mapped. Offshore growth is found to be feasible and to be as much as two times faster than in the intertidal zone (p < 0.001). However, the potential for growth is also revealed to be highly variable across the investigated area. Mapping reveals a clear spatial gradient in production potential in the offshore environment, with the northeastern segment of the bay far better suited than the southwestern. Results also highlight the added value of spatiotemporal data, such as satellite image time series, to drive modeling in support of marine spatial planning. The current work demonstrates the feasibility and benefit of such a coupled remote sensing-modeling approach within a shellfish farming context, responding to real and current interests of oyster producers.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerFrontiers in Marine ScienceOther literature type . Article . 2020All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::d31a45128e84b79b0062480211479b98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerFrontiers in Marine ScienceOther literature type . Article . 2020All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::d31a45128e84b79b0062480211479b98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018 United Kingdom, Germany EnglishFrontiers Media S.A. EC | CACHEEC| CACHEAuthors: Trystan Sanders; Lara Schmittmann; Jennifer C. Nascimento-Schulze; Frank Melzner;Trystan Sanders; Lara Schmittmann; Jennifer C. Nascimento-Schulze; Frank Melzner;In coastal temperate regions such as the Baltic Sea, calcifying bivalves dominate benthic communities playing a vital ecological role in maintaining biodiversity and nutrient recycling. At low salinities, bivalves exhibit reduced growth and calcification rates which is thought to result from physiological constraints associated with osmotic stress. Calcification demands a considerable amount of energy in calcifying molluscs and estuarine habitats provide sub-optimal conditions for calcification due to low concentrations of calcification substrates and large variations in carbonate chemistry. Therefore, we hypothesize that slow growth rates in estuarine bivalves result from increased costs of calcification, rather than costs associated with osmotic stress. To investigate this, we estimated the cost of calcification for the first time in benthic bivalve life stages and the relative energy allocation to calcification in three Mytilus populations along the Baltic salinity gradient. Our results indicate that calcification rates are significantly reduced only in 6 psu populations compared to 11 and 16 psu populations, coinciding with ca. 2–3-fold higher calcification costs at low salinity and temperature. This suggests that reduced growth of Baltic Mytilus at low salinities results from increased calcification costs rather than osmotic stress related costs. We also reveal that shell growth (both calcification and shell organic production) demands 31–60% of available assimilated energy from food, which is significantly higher than previous estimates. Energetically expensive calcification represents a major constraint on growth of mytilids in the estuarine and coastal seas where warming, acidification and desalination are predicted over the next century.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::2a0463054f6b84a9c082ec89edfc38df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 8 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::2a0463054f6b84a9c082ec89edfc38df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu