- home
- Advanced Search
Loading
apps Other research product2018 English NSF | RAPID: Recovery of Data f..., UKRI | Investigating the Dynamic..., EC | ICE2SEANSF| RAPID: Recovery of Data from the 5 August 2010 Petermann Glacier Breakup ,UKRI| Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework ,EC| ICE2SEAAhlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; Citterio, M.; As, D.; Fausto, R. S.; Hubbard, A.;We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2013 Belgium, Switzerland, Netherlands, DenmarkCopernicus GmbH UKRI | Investigating the Dynamic..., NSF | RAPID: Recovery of Data f..., EC | ICE2SEAUKRI| Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework ,NSF| RAPID: Recovery of Data from the 5 August 2010 Petermann Glacier Breakup ,EC| ICE2SEAAndreas P. Ahlstrøm; Signe B. Andersen; Morten L. Andersen; Horst Machguth; Faezeh M. Nick; Ian Joughin; Carleen Reijmer; R. S. W. van de Wal; J. P. Merryman Boncori; Jason E. Box; Michele Citterio; D. van As; Robert S. Fausto; Alun Hubbard;handle: 1874/276154
We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.©Author(s) 2013. info:eu-repo/semantics/published SCOPUS: ar.j
NARCIS arrow_drop_down Zurich Open Repository and ArchiveOther literature type . 2013Data sources: Zurich Open Repository and ArchiveOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyEarth System Science Data (ESSD)Article . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-27-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NARCIS arrow_drop_down Zurich Open Repository and ArchiveOther literature type . 2013Data sources: Zurich Open Repository and ArchiveOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyEarth System Science Data (ESSD)Article . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-27-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research product2018 English NSF | RAPID: Recovery of Data f..., UKRI | Investigating the Dynamic..., EC | ICE2SEANSF| RAPID: Recovery of Data from the 5 August 2010 Petermann Glacier Breakup ,UKRI| Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework ,EC| ICE2SEAAhlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; Citterio, M.; As, D.; Fausto, R. S.; Hubbard, A.;We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2013 Belgium, Switzerland, Netherlands, DenmarkCopernicus GmbH UKRI | Investigating the Dynamic..., NSF | RAPID: Recovery of Data f..., EC | ICE2SEAUKRI| Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework ,NSF| RAPID: Recovery of Data from the 5 August 2010 Petermann Glacier Breakup ,EC| ICE2SEAAndreas P. Ahlstrøm; Signe B. Andersen; Morten L. Andersen; Horst Machguth; Faezeh M. Nick; Ian Joughin; Carleen Reijmer; R. S. W. van de Wal; J. P. Merryman Boncori; Jason E. Box; Michele Citterio; D. van As; Robert S. Fausto; Alun Hubbard;handle: 1874/276154
We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.©Author(s) 2013. info:eu-repo/semantics/published SCOPUS: ar.j
NARCIS arrow_drop_down Zurich Open Repository and ArchiveOther literature type . 2013Data sources: Zurich Open Repository and ArchiveOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyEarth System Science Data (ESSD)Article . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-27-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NARCIS arrow_drop_down Zurich Open Repository and ArchiveOther literature type . 2013Data sources: Zurich Open Repository and ArchiveOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyEarth System Science Data (ESSD)Article . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-27-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu