Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
123 Research products, page 1 of 13

  • European Marine Science
  • Research software
  • Other research products
  • DE
  • RO
  • English

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Rehfeld, K.; Molkenthin, N.; Kurths, J.;
    Project: EC | LINC (289447)

    A critical challenge in paleoclimate data analysis is the fact that the proxy data are heterogeneously distributed in space, which affects statistical methods that rely on spatial embedding of data. In the paleoclimate network approach nodes represent paleoclimate proxy time series, and links in the network are given by statistically significant similarities between them. Their location in space, proxy and archive type is coded in the node attributes. We develop a semi-empirical model for Spatio-Temporally AutocoRrelated Time series, inspired by the interplay of different Asian Summer Monsoon (ASM) systems. We use an ensemble of transition runs of this START model to test whether and how spatio–temporal climate transitions could be detectable from (paleo)climate networks. We sample model time series both on a grid and at locations at which paleoclimate data are available to investigate the effect of the spatially heterogeneous availability of data. Node betweenness centrality, averaged over the transition region, does not respond to the transition displayed by the START model, neither in the grid-based nor in the scattered sampling arrangement. The regionally defined measures of regional node degree and cross link ratio, however, are indicative of the changes in both scenarios, although the magnitude of the changes differs according to the sampling. We find that the START model is particularly suitable for pseudo-proxy experiments to test the technical reconstruction limits of paleoclimate data based on their location, and we conclude that (paleo)climate networks are suitable for investigating spatio–temporal transitions in the dependence structure of underlying climatic fields.

  • Open Access English
    Authors: 
    Langenkämper, Daniel; Zurowietz, Martin; Schoening, Timm; Nattkemper, Tim W.;
    Publisher: Frontiers Media S.A.

    Combining state-of-the art digital imaging technology with different kinds of marine exploration techniques such as modern autonomous underwater vehicle (AUV), remote operating vehicle (ROV) or other monitoring platforms enables marine imaging on new spatial and/or temporal scales. A comprehensive interpretation of such image collections requires the detection, classification and quantification of objects of interest (OOI) in the images usually performed by domain experts. However, the data volume and the rich content of the images makes the support by software tools inevitable. We define some requirements for marine image annotation and present our new online tool BIIGLE 2.0. It is developed with a special focus on annotating benthic fauna in marine image collections with tools customized to increase efficiency and effectiveness in the manual annotation process. The software architecture of the system is described and the special features of BIIGLE 2.0 are illustrated with different use-cases and future developments are discussed.

  • Open Access English
    Authors: 
    Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; Malfatti, Francesca;
    Project: EC | JERICO-NEXT (654410), EC | AtlantOS (633211), EC | EMSO-Link (731036), UKRI | Development and applicati... (NE/N006496/1)

    In the field of ocean observing, the term of “observatory” is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or “gears” (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions. Refereed 14.A Manual (incl. handbook, guide, cookbook etc) 2018-09-07

  • Open Access English
    Authors: 
    Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 more
    Project: EC | MEECE (212085), EC | EPOCA (211384)

    Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

  • Open Access English
    Authors: 
    Grand, Maxime M.; Clinton-Bailey, Geraldine S.; Beaton, Alexander D.; Schaap, Allison M.; Johengen, Thomas H.; Tamburri, Mario N.; Connelly, Douglas P.; Mowlem, Matthew C.; Achterberg, Eric P.;
    Project: EC | SENSEOCEAN (614141)

    The development of phosphate sensors suitable for long-term in situ deployments in natural waters, is essential to improve our understanding of the distribution, fluxes, and biogeochemical role of this key nutrient in a changing ocean. Here, we describe the optimization of the molybdenum blue method for in situ work using a lab-on-chip (LOC) analyzer and evaluate its performance in the laboratory and at two contrasting field sites. The in situ performance of the LOC sensor is evaluated using hourly time-series data from a 56-day trial in Southampton Water (UK), as well as a month-long deployment in the subtropical oligotrophic waters of Kaneohe Bay (Hawaii, USA). In Kaneohe Bay, where phosphate concentrations were characteristic of the dry season (0.13 ± 0.03 μM, n = 704), the in situ sensor accuracy was 16 ± 12% and a potential diurnal cycle in phosphate concentrations was observed. In Southampton Water, the sensor data (1.02 ± 0.40 μM, n = 1,267) were accurate to ±0.10 μM relative to discrete reference samples. Hourly in situ monitoring revealed striking tidal and storm derived fluctuations in phosphate concentrations in Southampton Water that would not have been captured via discrete sampling. We show the impact of storms on phosphate concentrations in Southampton Water is modulated by the spring-neap tidal cycle and that the 10-fold decline in phosphate concentrations observed during the later stages of the deployment was consistent with the timing of a spring phytoplankton bloom in the English Channel. Under controlled laboratory conditions in a 250 L tank, the sensor demonstrated an accuracy and precision better than 10% irrespective of the salinity (0–30), turbidity (0–100 NTU), colored dissolved organic matter (CDOM) concentration (0–10mg/L), and temperature (5–20◦C) of the water (0.3–13 μM phosphate) being analyzed. This work demonstrates that the LOC technology is mature enough to quantify the influence of stochastic events on nutrient budgets and to elucidate the role of phosphate in regulating phytoplankton productivity and community composition in estuarine and coastal regimes. Refereed 14.A Nutrients TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc) Standard Operating Procedure

  • Open Access English
    Authors: 
    Becker, Susan; Aoyama, Michio; Woodward, E. Malcolm S.; Bakker, Karel; Coverly, Stephen; Mahaffey, Claire; Tanhua, Toste;
    Publisher: GO-SHIP Program and SCOR
    Project: NSF | Support for International... (1840868), NSF | Support for International... (1546580)

    This GO-SHIP manual is a rewrite of the original version by Hydes et al. (2010), and reviews basic sample collection and storage, aspects of CFA using an Auto-Analyzer, and specific nutrient methods in use by many laboratories doing repeat hydrography. The document also covers laboratory best practices including quality control and quality assurance (QC/QA) procedures to obtain the best results, and suggests protocols for the use of reference materials (RM) and certified reference materials (CRMs). Published This is a rewrite of : Hydes, D. J.; Aoyama, M.; Aminot, A.; Bakker, K.; Becker,S.; Coverly, S.; Daniel, A.; Dickson, A. G.; Grosso, O.; Kerouel, R.; van Ooijen, J.; Sato, K.; Tanhua, T.; Woodward, E. M. S. and Zhang, J. Z. (2010) Determination of Dissolved Nutrients (N, P, SI) in Seawater With High Precision and Inter-Comparability Using Gas-Segmented Continuous Flow Analysers. In: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. Version 1. (eds Hood, E.M., C.L. Sabine, and B.M. Sloyan). IOCCP Report Number 14, ICPO Publication Series Number 134. Available online at: http://www.go-ship.org/HydroMan.html. Refereed Current 14.A Nutrients Mature: Methodologies are well demonstrated for a given objective, documented and peer reviewed; methods are commonly used by more than one organization (TRL 7-9) Best Practice Standard Operating Procedure

  • Open Access English
    Authors: 
    Sánchez, Laura; Drewes, Hermann;
    Publisher: PANGAEA
    Country: Germany

    Strong earthquakes cause large changes in the station positions and velocities of the geodetic reference stations; i.e., the global ITRF (International Terrestrial Reference Frame) and its regional densifications like SIRGAS (Sistema de Referencia Geocéntrico para Las Américas) in Latin America and the Caribbean. To ensure the long-term stability of the geodetic reference frames, the transformation of station positions between different epochs requires the computation of reliable continuous surface deformation (or velocity) models. This data set contains the new continental continuous crustal deformation model VEMOS2015 (Velocity Model for SIRGAS 2015) for Latin America and the Caribbean inferred from GNSS (GPS+GLONASS) measurements gained after the strong earthquakes occurred in 2010 in Chile and Mexico. It is based on a multi-year velocity solution for a network of 456 continuously operating GNSS stations covering a five years period from March 14, 2010 to April 11, 2015. VEMOS2015 is computed using the least square collocation (LSC) approach with empirically determined covariance functions.

  • Open Access English
    Authors: 
    Waelbroeck, Claire; Pichat, Sylvain; Böhm, Evelyn; Lougheed, Bryan C.; Faranda, Davide; Vrac, Mathieu; Missiaen, Lise; Vazquez Riveiros, Natalia; Burckel, Pierre; Lippold, Jörg; +4 more
    Project: EC | ACCLIMATE (339108), ANR | RETRO (ANR-09-BLAN-0347)

    Thanks to its optimal location on the northern Brazilian margin, core MD09-3257 records both ocean circulation and atmospheric changes. The latter occur locally in the form of increased rainfall on the adjacent continent during the cold intervals recorded in Greenland ice and northern North Atlantic sediment cores (i.e., Greenland stadials). These rainfall events are recorded in MD09-3257 as peaks in ln(Ti ∕ Ca). New sedimentary Pa ∕ Th data indicate that mid-depth western equatorial water mass transport decreased during all of the Greenland stadials of the last 40 kyr. Using cross-wavelet transforms and spectrogram analysis, we assess the relative phase between the MD09-3257 sedimentary Pa ∕ Th and ln(Ti ∕ Ca) signals. We show that decreased water mass transport between a depth of ∼1300 and 2300 m in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 400 yr at Dansgaard–Oeschger (D–O) frequencies, and by 280 to 980 yr at Heinrich-like frequencies. We suggest that the large lead of ocean circulation changes with respect to changes in tropical South American precipitation at Heinrich-like frequencies is related to the effect of a positive feedback involving iceberg discharges in the North Atlantic. In contrast, the absence of widespread ice rafted detrital layers in North Atlantic cores during D–O stadials supports the hypothesis that a feedback such as this was not triggered in the case of D–O stadials, with circulation slowdowns and subsequent changes remaining more limited during D–O stadials than Heinrich stadials.

  • Open Access English
    Authors: 
    Gattuso, J-P.; Kirkwood, W.; Barry, J. P.; Cox, E.; Gazeau, F.; Hansson, L.; Hendriks, I.; Kline, D.I.; Mahacek, P.; Martin, S.; +8 more

    Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change. Refereed 14.3 Inorganic carbon TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc)

  • Open Access English
    Authors: 
    Allen, John T.; Munoz, Cristian; Gardiner, Jim; Reeve, Krissy A.; Alou-Font, Eva; Zarokanellos, Nikolaos;
    Project: EC | JERICO-NEXT (654410)

    Glider vehicles are now perhaps some of the most prolific providers of real-time and near-real-time operational oceanographic data. However, the data from these vehicles can and should be considered to have a long-term legacy value capable of playing a critical role in understanding and separating inter-annual, inter-decadal, and longterm global change. To achieve this, we have to go further than simply assuming the manufacturer’s calibrations, and field correct glider data in a more traditional way, for example, by careful comparison to water bottle calibrated lowered CTD datasets and/or “gold” standard recent climatologies. In this manuscript, we bring into the 21st century a historical technique that has been used manually by oceanographers for many years/decades for field correction/inter-calibration, thermal lag correction, and adjustment for biological fouling. The technique has now been made semi-automatic for machine processing of oceanographic glider data, although its future and indeed its origins have far wider scope. The subject of this manuscript is drawn from the original Description of Work (DoW) for a key task in the recently completed JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatories) EU-funded program, but goes on to consider future application and the suitability for integration with machine learning. Refereed 14.A Sea surface salinity Subsurface salinity TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc) Standard Operating Procedure 2019-12-03

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
123 Research products, page 1 of 13
  • Open Access English
    Authors: 
    Rehfeld, K.; Molkenthin, N.; Kurths, J.;
    Project: EC | LINC (289447)

    A critical challenge in paleoclimate data analysis is the fact that the proxy data are heterogeneously distributed in space, which affects statistical methods that rely on spatial embedding of data. In the paleoclimate network approach nodes represent paleoclimate proxy time series, and links in the network are given by statistically significant similarities between them. Their location in space, proxy and archive type is coded in the node attributes. We develop a semi-empirical model for Spatio-Temporally AutocoRrelated Time series, inspired by the interplay of different Asian Summer Monsoon (ASM) systems. We use an ensemble of transition runs of this START model to test whether and how spatio–temporal climate transitions could be detectable from (paleo)climate networks. We sample model time series both on a grid and at locations at which paleoclimate data are available to investigate the effect of the spatially heterogeneous availability of data. Node betweenness centrality, averaged over the transition region, does not respond to the transition displayed by the START model, neither in the grid-based nor in the scattered sampling arrangement. The regionally defined measures of regional node degree and cross link ratio, however, are indicative of the changes in both scenarios, although the magnitude of the changes differs according to the sampling. We find that the START model is particularly suitable for pseudo-proxy experiments to test the technical reconstruction limits of paleoclimate data based on their location, and we conclude that (paleo)climate networks are suitable for investigating spatio–temporal transitions in the dependence structure of underlying climatic fields.

  • Open Access English
    Authors: 
    Langenkämper, Daniel; Zurowietz, Martin; Schoening, Timm; Nattkemper, Tim W.;
    Publisher: Frontiers Media S.A.

    Combining state-of-the art digital imaging technology with different kinds of marine exploration techniques such as modern autonomous underwater vehicle (AUV), remote operating vehicle (ROV) or other monitoring platforms enables marine imaging on new spatial and/or temporal scales. A comprehensive interpretation of such image collections requires the detection, classification and quantification of objects of interest (OOI) in the images usually performed by domain experts. However, the data volume and the rich content of the images makes the support by software tools inevitable. We define some requirements for marine image annotation and present our new online tool BIIGLE 2.0. It is developed with a special focus on annotating benthic fauna in marine image collections with tools customized to increase efficiency and effectiveness in the manual annotation process. The software architecture of the system is described and the special features of BIIGLE 2.0 are illustrated with different use-cases and future developments are discussed.

  • Open Access English
    Authors: 
    Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; Malfatti, Francesca;
    Project: EC | JERICO-NEXT (654410), EC | AtlantOS (633211), EC | EMSO-Link (731036), UKRI | Development and applicati... (NE/N006496/1)

    In the field of ocean observing, the term of “observatory” is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or “gears” (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions. Refereed 14.A Manual (incl. handbook, guide, cookbook etc) 2018-09-07

  • Open Access English
    Authors: 
    Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 more
    Project: EC | MEECE (212085), EC | EPOCA (211384)

    Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

  • Open Access English
    Authors: 
    Grand, Maxime M.; Clinton-Bailey, Geraldine S.; Beaton, Alexander D.; Schaap, Allison M.; Johengen, Thomas H.; Tamburri, Mario N.; Connelly, Douglas P.; Mowlem, Matthew C.; Achterberg, Eric P.;
    Project: EC | SENSEOCEAN (614141)

    The development of phosphate sensors suitable for long-term in situ deployments in natural waters, is essential to improve our understanding of the distribution, fluxes, and biogeochemical role of this key nutrient in a changing ocean. Here, we describe the optimization of the molybdenum blue method for in situ work using a lab-on-chip (LOC) analyzer and evaluate its performance in the laboratory and at two contrasting field sites. The in situ performance of the LOC sensor is evaluated using hourly time-series data from a 56-day trial in Southampton Water (UK), as well as a month-long deployment in the subtropical oligotrophic waters of Kaneohe Bay (Hawaii, USA). In Kaneohe Bay, where phosphate concentrations were characteristic of the dry season (0.13 ± 0.03 μM, n = 704), the in situ sensor accuracy was 16 ± 12% and a potential diurnal cycle in phosphate concentrations was observed. In Southampton Water, the sensor data (1.02 ± 0.40 μM, n = 1,267) were accurate to ±0.10 μM relative to discrete reference samples. Hourly in situ monitoring revealed striking tidal and storm derived fluctuations in phosphate concentrations in Southampton Water that would not have been captured via discrete sampling. We show the impact of storms on phosphate concentrations in Southampton Water is modulated by the spring-neap tidal cycle and that the 10-fold decline in phosphate concentrations observed during the later stages of the deployment was consistent with the timing of a spring phytoplankton bloom in the English Channel. Under controlled laboratory conditions in a 250 L tank, the sensor demonstrated an accuracy and precision better than 10% irrespective of the salinity (0–30), turbidity (0–100 NTU), colored dissolved organic matter (CDOM) concentration (0–10mg/L), and temperature (5–20◦C) of the water (0.3–13 μM phosphate) being analyzed. This work demonstrates that the LOC technology is mature enough to quantify the influence of stochastic events on nutrient budgets and to elucidate the role of phosphate in regulating phytoplankton productivity and community composition in estuarine and coastal regimes. Refereed 14.A Nutrients TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc) Standard Operating Procedure

  • Open Access English
    Authors: 
    Becker, Susan; Aoyama, Michio; Woodward, E. Malcolm S.; Bakker, Karel; Coverly, Stephen; Mahaffey, Claire; Tanhua, Toste;
    Publisher: GO-SHIP Program and SCOR
    Project: NSF | Support for International... (1840868), NSF | Support for International... (1546580)

    This GO-SHIP manual is a rewrite of the original version by Hydes et al. (2010), and reviews basic sample collection and storage, aspects of CFA using an Auto-Analyzer, and specific nutrient methods in use by many laboratories doing repeat hydrography. The document also covers laboratory best practices including quality control and quality assurance (QC/QA) procedures to obtain the best results, and suggests protocols for the use of reference materials (RM) and certified reference materials (CRMs). Published This is a rewrite of : Hydes, D. J.; Aoyama, M.; Aminot, A.; Bakker, K.; Becker,S.; Coverly, S.; Daniel, A.; Dickson, A. G.; Grosso, O.; Kerouel, R.; van Ooijen, J.; Sato, K.; Tanhua, T.; Woodward, E. M. S. and Zhang, J. Z. (2010) Determination of Dissolved Nutrients (N, P, SI) in Seawater With High Precision and Inter-Comparability Using Gas-Segmented Continuous Flow Analysers. In: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. Version 1. (eds Hood, E.M., C.L. Sabine, and B.M. Sloyan). IOCCP Report Number 14, ICPO Publication Series Number 134. Available online at: http://www.go-ship.org/HydroMan.html. Refereed Current 14.A Nutrients Mature: Methodologies are well demonstrated for a given objective, documented and peer reviewed; methods are commonly used by more than one organization (TRL 7-9) Best Practice Standard Operating Procedure

  • Open Access English
    Authors: 
    Sánchez, Laura; Drewes, Hermann;
    Publisher: PANGAEA
    Country: Germany

    Strong earthquakes cause large changes in the station positions and velocities of the geodetic reference stations; i.e., the global ITRF (International Terrestrial Reference Frame) and its regional densifications like SIRGAS (Sistema de Referencia Geocéntrico para Las Américas) in Latin America and the Caribbean. To ensure the long-term stability of the geodetic reference frames, the transformation of station positions between different epochs requires the computation of reliable continuous surface deformation (or velocity) models. This data set contains the new continental continuous crustal deformation model VEMOS2015 (Velocity Model for SIRGAS 2015) for Latin America and the Caribbean inferred from GNSS (GPS+GLONASS) measurements gained after the strong earthquakes occurred in 2010 in Chile and Mexico. It is based on a multi-year velocity solution for a network of 456 continuously operating GNSS stations covering a five years period from March 14, 2010 to April 11, 2015. VEMOS2015 is computed using the least square collocation (LSC) approach with empirically determined covariance functions.

  • Open Access English
    Authors: 
    Waelbroeck, Claire; Pichat, Sylvain; Böhm, Evelyn; Lougheed, Bryan C.; Faranda, Davide; Vrac, Mathieu; Missiaen, Lise; Vazquez Riveiros, Natalia; Burckel, Pierre; Lippold, Jörg; +4 more
    Project: EC | ACCLIMATE (339108), ANR | RETRO (ANR-09-BLAN-0347)

    Thanks to its optimal location on the northern Brazilian margin, core MD09-3257 records both ocean circulation and atmospheric changes. The latter occur locally in the form of increased rainfall on the adjacent continent during the cold intervals recorded in Greenland ice and northern North Atlantic sediment cores (i.e., Greenland stadials). These rainfall events are recorded in MD09-3257 as peaks in ln(Ti ∕ Ca). New sedimentary Pa ∕ Th data indicate that mid-depth western equatorial water mass transport decreased during all of the Greenland stadials of the last 40 kyr. Using cross-wavelet transforms and spectrogram analysis, we assess the relative phase between the MD09-3257 sedimentary Pa ∕ Th and ln(Ti ∕ Ca) signals. We show that decreased water mass transport between a depth of ∼1300 and 2300 m in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 400 yr at Dansgaard–Oeschger (D–O) frequencies, and by 280 to 980 yr at Heinrich-like frequencies. We suggest that the large lead of ocean circulation changes with respect to changes in tropical South American precipitation at Heinrich-like frequencies is related to the effect of a positive feedback involving iceberg discharges in the North Atlantic. In contrast, the absence of widespread ice rafted detrital layers in North Atlantic cores during D–O stadials supports the hypothesis that a feedback such as this was not triggered in the case of D–O stadials, with circulation slowdowns and subsequent changes remaining more limited during D–O stadials than Heinrich stadials.

  • Open Access English
    Authors: 
    Gattuso, J-P.; Kirkwood, W.; Barry, J. P.; Cox, E.; Gazeau, F.; Hansson, L.; Hendriks, I.; Kline, D.I.; Mahacek, P.; Martin, S.; +8 more

    Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change. Refereed 14.3 Inorganic carbon TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc)

  • Open Access English
    Authors: 
    Allen, John T.; Munoz, Cristian; Gardiner, Jim; Reeve, Krissy A.; Alou-Font, Eva; Zarokanellos, Nikolaos;
    Project: EC | JERICO-NEXT (654410)

    Glider vehicles are now perhaps some of the most prolific providers of real-time and near-real-time operational oceanographic data. However, the data from these vehicles can and should be considered to have a long-term legacy value capable of playing a critical role in understanding and separating inter-annual, inter-decadal, and longterm global change. To achieve this, we have to go further than simply assuming the manufacturer’s calibrations, and field correct glider data in a more traditional way, for example, by careful comparison to water bottle calibrated lowered CTD datasets and/or “gold” standard recent climatologies. In this manuscript, we bring into the 21st century a historical technique that has been used manually by oceanographers for many years/decades for field correction/inter-calibration, thermal lag correction, and adjustment for biological fouling. The technique has now been made semi-automatic for machine processing of oceanographic glider data, although its future and indeed its origins have far wider scope. The subject of this manuscript is drawn from the original Description of Work (DoW) for a key task in the recently completed JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatories) EU-funded program, but goes on to consider future application and the suitability for integration with machine learning. Refereed 14.A Sea surface salinity Subsurface salinity TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc) Standard Operating Procedure 2019-12-03