- home
- Advanced Search
2,017 Research products, page 1 of 202
Loading
- Other research product . 2018Open Access EnglishAuthors:Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 moreSteinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; Schneider, B.; Segschneider, J.;Project: EC | EPOCA (211384), EC | MEECE (212085)
Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
- Other research product . 2018Open Access EnglishAuthors:Holme, Christian; Gkinis, Vasileios; Lanzky, Mika; Morris, Valerie; Olesen, Martin; Thayer, Abigail; Vaughn, Bruce H.; Vinther, Bo M.;Holme, Christian; Gkinis, Vasileios; Lanzky, Mika; Morris, Valerie; Olesen, Martin; Thayer, Abigail; Vaughn, Bruce H.; Vinther, Bo M.;Project: EC | ICE2ICE (610055)
This study examines the stable water isotope signal (δ18O) of three ice cores drilled on the Renland peninsula (East Greenland coast). While ice core δ18O measurements qualitatively are a measure of the local temperature history, the δ18O variability actually reflects the integrated hydrological activity that the deposited ice experienced from the evaporation source to the condensation site. Thus, as Renland is located next to a fluctuating sea ice cover, the transfer function used to infer past temperatures from the δ18O variability is potentially influenced by variations in the local moisture conditions. The objective of this study is therefore to evaluate the δ18O variability of ice cores drilled on Renland and examine what amount that can be attributed to regional temperature variations. In the analysis, three ice cores are utilized to create stacked summer, winter and annually averaged δ18O signals (AD 1801–2014). The imprint of temperature on δ18O is first examined by correlating the δ18O stacks with instrumental temperature records from East Greenland (AD 1895–2014) and Iceland (AD 1830–2014) and with the regional climate model HIRHAM5 (AD 1980–2014). The results show that the δ18O variability correlates with regional temperatures on both a seasonal and an annual scale between 1910–2014 while δ18O is uncorrelated with Iceland temperatures between 1830–1909. Our analysis indicates that the unstable regional δ18O-temperature correlation does not result from changes in weather patterns through respectively strengthening and weakening of the North Atlantic Oscillation. Instead, the results imply that the varying δ18O-temperature relation is connected with the volume flux of sea ice exported through Fram Strait (and south along the coast of East Greenland). Notably, the δ18O variability only reflects the variations in regional temperature when the temperature anomaly is positive and the sea ice export anomaly is negative. It is hypothesized that this could be caused by a larger sea ice volume flux during cold years which suppresses the Iceland temperature signature in the Renland δ18O signal. However, more isotope-enabled modeling studies with emphasis on coastal ice caps are needed in order to quantify the mechanisms behind this observation. As the amount of Renland δ18O variability that reflects regional temperature varies with time, the results have implications for studies performing regression-based δ18O-temperature reconstructions based on ice cores drilled in the vicinity of a fluctuating sea ice cover.
- Other research product . Other ORP type . 2012EnglishAuthors:Le Bail, Pierre-Yves; Bugeon, Jérôme; Chemineau, Philippe; Dameron, Olivier; Fatet, Alice; Hue, Isabelle; Hurtaud, Catherine; Joret, Léa; Meunier-Salaün, Marie-Christine; Park, C.; +4 moreLe Bail, Pierre-Yves; Bugeon, Jérôme; Chemineau, Philippe; Dameron, Olivier; Fatet, Alice; Hue, Isabelle; Hurtaud, Catherine; Joret, Léa; Meunier-Salaün, Marie-Christine; Park, C.; Reecy, James; Reichstadt, Matthieu,; Valancogne, Alain; Vernet, Jean;Publisher: HAL CCSDCountry: FranceProject: EC | AQUAEXCEL (262336)
il s'agit d'un type de produit dont les métadonnées ne correspondent pas aux métadonnées attendues dans les autres types de produit : SOFTWARE; absent
- Other research product . 2018Open Access EnglishAuthors:Fürst, J. J.; Rybak, O.; Goelzer, H.; Smedt, B.; Groen, P.; Huybrechts, P.;Fürst, J. J.; Rybak, O.; Goelzer, H.; Smedt, B.; Groen, P.; Huybrechts, P.;Project: EC | ICE2SEA (226375)
We present a finite difference implementation of a three-dimensional higher-order ice sheet model. In comparison to a conventional centred difference discretisation it enhances both numerical stability and convergence. In order to achieve these benefits the discretisation of the governing force balance equation makes extensive use of information on staggered grid points. Using the same iterative solver, a centred difference discretisation that operates exclusively on the regular grid serves as a reference. The reprise of the ISMIP-HOM experiments indicates that both discretisations are capable of reproducing the higher-order model inter-comparison results. This setup allows a direct comparison of the two numerical implementations also with respect to their convergence behaviour. First and foremost, the new finite difference scheme facilitates convergence by a factor of up to 7 and 2.6 in average. In addition to this decrease in computational costs, the accuracy for the resultant velocity field can be chosen higher in the novel finite difference implementation. Changing the discretisation also prevents build-up of local field irregularites that occasionally cause divergence of the solution for the reference discretisation. The improved behaviour makes the new discretisation more reliable for extensive application to real ice geometries. Higher accuracy and robust numerics are crucial in time dependent applications since numerical oscillations in the velocity field of subsequent time steps are attenuated and divergence of the solution is prevented.
- Other research product . 2018Open Access EnglishAuthors:Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.;Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.;Project: EC | NACLIM (308299), EC | THOR (212643)
The flow of warm and saline water from the Atlantic Ocean, across the Greenland–Scotland Ridge, into the Nordic Seas – the Atlantic inflow – is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s−1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the Atlantic inflow, which have been claimed mainly to be caused by the weakened subpolar gyre.
- Other research product . Other ORP type . 2014EnglishAuthors:Assante M.;Assante M.;Country: ItalyProject: EC | IMARINE (283644)
The gCube social networking facilities manifest in a number of applications made available through a thin Web browser are conceptually close to the common facilities promoted by social networks - e.g., posting news, commenting on posted news - yet adapted to deal with large scale collaboration and cooperation on comprehensive scientific products, data sets, theories and tools. Social Profile allow users to enter their professional data and contact information. It also allows to import the profile data directly from LinkedIn via the OAuth 2.0 protocol.
- Other research product . Other ORP type . 2015EnglishAuthors:Simi M.; Cirillo R.;Simi M.; Cirillo R.;Country: ItalyProject: EC | IMARINE (283644)
The Resource Manager is a SOA based service in charge of managing gCube Scope contexts. The Resource Manager 2.0, by coordinating five distinguished services (Deployer, Software Gateway, Resource Broker, gCube Hosting Node Manager, Web Hosting Node Manager), realizes the VRE dynamic deployment by, respectively, collecting service implementations, selecting target nodes for deployment within the infrastructure, and hosting resources implementations at selected nodes. The primary role assigned to this service is to collects and manage all the resources and service implementations related to a specific Virtual Organization.
- Other research product . Collection . 2012Open Access EnglishAuthors:Pritchard, Hamish D; Ligtenberg, Stefan R M; Fricker, Helen; van den Broeke, Michiel R; Vaughan, David G; Padman, Laurie;Pritchard, Hamish D; Ligtenberg, Stefan R M; Fricker, Helen; van den Broeke, Michiel R; Vaughan, David G; Padman, Laurie;Publisher: PANGAEAProject: EC | ICE2SEA (226375)
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Floating ice shelves buttress the flow of grounded tributary glaciers and their thickness and extent are particularly susceptible to changes in both climate and ocean forcing. Recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. However, the extent and magnitude of ice-shelf thickness change, its causes and its link to glacier flow rate are so poorly understood that its influence on the future of the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal for the first time the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary driver of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet that has led to accelerated glacier flow. The highest thinning rates (~7 m/a) occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen Seas and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic Ice Sheet mass balance, and hence global sea-level, on annual to decadal timescales.
- Other research product . 2018Open Access EnglishAuthors:Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Project: EC | HERMIONE (226354)
The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560–760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560–2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer suitable habitat for benthic organisms. By comparing the locally restricted video observations and the broad-scale monitoring of a much larger and deeper seafloor area as derived by hydroacoustic seabed classification, it becomes obvious that habitat information obtained by in situ sampling may provide a rather scattered pattern about the entire seamount ecosystem. Solely with a combination of both methods, a satisfactory approach to describe the diverse characteristics of a seamount ecosystem can be derived which is in turn indispensable for future scientific monitoring campaigns as well as management and conservation purposes.
- Other research product . 2018Open Access EnglishAuthors:Rehfeld, K.; Molkenthin, N.; Kurths, J.;Rehfeld, K.; Molkenthin, N.; Kurths, J.;Project: EC | LINC (289447)
A critical challenge in paleoclimate data analysis is the fact that the proxy data are heterogeneously distributed in space, which affects statistical methods that rely on spatial embedding of data. In the paleoclimate network approach nodes represent paleoclimate proxy time series, and links in the network are given by statistically significant similarities between them. Their location in space, proxy and archive type is coded in the node attributes. We develop a semi-empirical model for Spatio-Temporally AutocoRrelated Time series, inspired by the interplay of different Asian Summer Monsoon (ASM) systems. We use an ensemble of transition runs of this START model to test whether and how spatio–temporal climate transitions could be detectable from (paleo)climate networks. We sample model time series both on a grid and at locations at which paleoclimate data are available to investigate the effect of the spatially heterogeneous availability of data. Node betweenness centrality, averaged over the transition region, does not respond to the transition displayed by the START model, neither in the grid-based nor in the scattered sampling arrangement. The regionally defined measures of regional node degree and cross link ratio, however, are indicative of the changes in both scenarios, although the magnitude of the changes differs according to the sampling. We find that the START model is particularly suitable for pseudo-proxy experiments to test the technical reconstruction limits of paleoclimate data based on their location, and we conclude that (paleo)climate networks are suitable for investigating spatio–temporal transitions in the dependence structure of underlying climatic fields.
2,017 Research products, page 1 of 202
Loading
- Other research product . 2018Open Access EnglishAuthors:Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 moreSteinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; Schneider, B.; Segschneider, J.;Project: EC | EPOCA (211384), EC | MEECE (212085)
Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
- Other research product . 2018Open Access EnglishAuthors:Holme, Christian; Gkinis, Vasileios; Lanzky, Mika; Morris, Valerie; Olesen, Martin; Thayer, Abigail; Vaughn, Bruce H.; Vinther, Bo M.;Holme, Christian; Gkinis, Vasileios; Lanzky, Mika; Morris, Valerie; Olesen, Martin; Thayer, Abigail; Vaughn, Bruce H.; Vinther, Bo M.;Project: EC | ICE2ICE (610055)
This study examines the stable water isotope signal (δ18O) of three ice cores drilled on the Renland peninsula (East Greenland coast). While ice core δ18O measurements qualitatively are a measure of the local temperature history, the δ18O variability actually reflects the integrated hydrological activity that the deposited ice experienced from the evaporation source to the condensation site. Thus, as Renland is located next to a fluctuating sea ice cover, the transfer function used to infer past temperatures from the δ18O variability is potentially influenced by variations in the local moisture conditions. The objective of this study is therefore to evaluate the δ18O variability of ice cores drilled on Renland and examine what amount that can be attributed to regional temperature variations. In the analysis, three ice cores are utilized to create stacked summer, winter and annually averaged δ18O signals (AD 1801–2014). The imprint of temperature on δ18O is first examined by correlating the δ18O stacks with instrumental temperature records from East Greenland (AD 1895–2014) and Iceland (AD 1830–2014) and with the regional climate model HIRHAM5 (AD 1980–2014). The results show that the δ18O variability correlates with regional temperatures on both a seasonal and an annual scale between 1910–2014 while δ18O is uncorrelated with Iceland temperatures between 1830–1909. Our analysis indicates that the unstable regional δ18O-temperature correlation does not result from changes in weather patterns through respectively strengthening and weakening of the North Atlantic Oscillation. Instead, the results imply that the varying δ18O-temperature relation is connected with the volume flux of sea ice exported through Fram Strait (and south along the coast of East Greenland). Notably, the δ18O variability only reflects the variations in regional temperature when the temperature anomaly is positive and the sea ice export anomaly is negative. It is hypothesized that this could be caused by a larger sea ice volume flux during cold years which suppresses the Iceland temperature signature in the Renland δ18O signal. However, more isotope-enabled modeling studies with emphasis on coastal ice caps are needed in order to quantify the mechanisms behind this observation. As the amount of Renland δ18O variability that reflects regional temperature varies with time, the results have implications for studies performing regression-based δ18O-temperature reconstructions based on ice cores drilled in the vicinity of a fluctuating sea ice cover.
- Other research product . Other ORP type . 2012EnglishAuthors:Le Bail, Pierre-Yves; Bugeon, Jérôme; Chemineau, Philippe; Dameron, Olivier; Fatet, Alice; Hue, Isabelle; Hurtaud, Catherine; Joret, Léa; Meunier-Salaün, Marie-Christine; Park, C.; +4 moreLe Bail, Pierre-Yves; Bugeon, Jérôme; Chemineau, Philippe; Dameron, Olivier; Fatet, Alice; Hue, Isabelle; Hurtaud, Catherine; Joret, Léa; Meunier-Salaün, Marie-Christine; Park, C.; Reecy, James; Reichstadt, Matthieu,; Valancogne, Alain; Vernet, Jean;Publisher: HAL CCSDCountry: FranceProject: EC | AQUAEXCEL (262336)
il s'agit d'un type de produit dont les métadonnées ne correspondent pas aux métadonnées attendues dans les autres types de produit : SOFTWARE; absent
- Other research product . 2018Open Access EnglishAuthors:Fürst, J. J.; Rybak, O.; Goelzer, H.; Smedt, B.; Groen, P.; Huybrechts, P.;Fürst, J. J.; Rybak, O.; Goelzer, H.; Smedt, B.; Groen, P.; Huybrechts, P.;Project: EC | ICE2SEA (226375)
We present a finite difference implementation of a three-dimensional higher-order ice sheet model. In comparison to a conventional centred difference discretisation it enhances both numerical stability and convergence. In order to achieve these benefits the discretisation of the governing force balance equation makes extensive use of information on staggered grid points. Using the same iterative solver, a centred difference discretisation that operates exclusively on the regular grid serves as a reference. The reprise of the ISMIP-HOM experiments indicates that both discretisations are capable of reproducing the higher-order model inter-comparison results. This setup allows a direct comparison of the two numerical implementations also with respect to their convergence behaviour. First and foremost, the new finite difference scheme facilitates convergence by a factor of up to 7 and 2.6 in average. In addition to this decrease in computational costs, the accuracy for the resultant velocity field can be chosen higher in the novel finite difference implementation. Changing the discretisation also prevents build-up of local field irregularites that occasionally cause divergence of the solution for the reference discretisation. The improved behaviour makes the new discretisation more reliable for extensive application to real ice geometries. Higher accuracy and robust numerics are crucial in time dependent applications since numerical oscillations in the velocity field of subsequent time steps are attenuated and divergence of the solution is prevented.
- Other research product . 2018Open Access EnglishAuthors:Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.;Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.;Project: EC | NACLIM (308299), EC | THOR (212643)
The flow of warm and saline water from the Atlantic Ocean, across the Greenland–Scotland Ridge, into the Nordic Seas – the Atlantic inflow – is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s−1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the Atlantic inflow, which have been claimed mainly to be caused by the weakened subpolar gyre.
- Other research product . Other ORP type . 2014EnglishAuthors:Assante M.;Assante M.;Country: ItalyProject: EC | IMARINE (283644)
The gCube social networking facilities manifest in a number of applications made available through a thin Web browser are conceptually close to the common facilities promoted by social networks - e.g., posting news, commenting on posted news - yet adapted to deal with large scale collaboration and cooperation on comprehensive scientific products, data sets, theories and tools. Social Profile allow users to enter their professional data and contact information. It also allows to import the profile data directly from LinkedIn via the OAuth 2.0 protocol.
- Other research product . Other ORP type . 2015EnglishAuthors:Simi M.; Cirillo R.;Simi M.; Cirillo R.;Country: ItalyProject: EC | IMARINE (283644)
The Resource Manager is a SOA based service in charge of managing gCube Scope contexts. The Resource Manager 2.0, by coordinating five distinguished services (Deployer, Software Gateway, Resource Broker, gCube Hosting Node Manager, Web Hosting Node Manager), realizes the VRE dynamic deployment by, respectively, collecting service implementations, selecting target nodes for deployment within the infrastructure, and hosting resources implementations at selected nodes. The primary role assigned to this service is to collects and manage all the resources and service implementations related to a specific Virtual Organization.
- Other research product . Collection . 2012Open Access EnglishAuthors:Pritchard, Hamish D; Ligtenberg, Stefan R M; Fricker, Helen; van den Broeke, Michiel R; Vaughan, David G; Padman, Laurie;Pritchard, Hamish D; Ligtenberg, Stefan R M; Fricker, Helen; van den Broeke, Michiel R; Vaughan, David G; Padman, Laurie;Publisher: PANGAEAProject: EC | ICE2SEA (226375)
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Floating ice shelves buttress the flow of grounded tributary glaciers and their thickness and extent are particularly susceptible to changes in both climate and ocean forcing. Recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. However, the extent and magnitude of ice-shelf thickness change, its causes and its link to glacier flow rate are so poorly understood that its influence on the future of the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal for the first time the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary driver of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet that has led to accelerated glacier flow. The highest thinning rates (~7 m/a) occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen Seas and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic Ice Sheet mass balance, and hence global sea-level, on annual to decadal timescales.
- Other research product . 2018Open Access EnglishAuthors:Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Project: EC | HERMIONE (226354)
The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560–760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560–2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer suitable habitat for benthic organisms. By comparing the locally restricted video observations and the broad-scale monitoring of a much larger and deeper seafloor area as derived by hydroacoustic seabed classification, it becomes obvious that habitat information obtained by in situ sampling may provide a rather scattered pattern about the entire seamount ecosystem. Solely with a combination of both methods, a satisfactory approach to describe the diverse characteristics of a seamount ecosystem can be derived which is in turn indispensable for future scientific monitoring campaigns as well as management and conservation purposes.
- Other research product . 2018Open Access EnglishAuthors:Rehfeld, K.; Molkenthin, N.; Kurths, J.;Rehfeld, K.; Molkenthin, N.; Kurths, J.;Project: EC | LINC (289447)
A critical challenge in paleoclimate data analysis is the fact that the proxy data are heterogeneously distributed in space, which affects statistical methods that rely on spatial embedding of data. In the paleoclimate network approach nodes represent paleoclimate proxy time series, and links in the network are given by statistically significant similarities between them. Their location in space, proxy and archive type is coded in the node attributes. We develop a semi-empirical model for Spatio-Temporally AutocoRrelated Time series, inspired by the interplay of different Asian Summer Monsoon (ASM) systems. We use an ensemble of transition runs of this START model to test whether and how spatio–temporal climate transitions could be detectable from (paleo)climate networks. We sample model time series both on a grid and at locations at which paleoclimate data are available to investigate the effect of the spatially heterogeneous availability of data. Node betweenness centrality, averaged over the transition region, does not respond to the transition displayed by the START model, neither in the grid-based nor in the scattered sampling arrangement. The regionally defined measures of regional node degree and cross link ratio, however, are indicative of the changes in both scenarios, although the magnitude of the changes differs according to the sampling. We find that the START model is particularly suitable for pseudo-proxy experiments to test the technical reconstruction limits of paleoclimate data based on their location, and we conclude that (paleo)climate networks are suitable for investigating spatio–temporal transitions in the dependence structure of underlying climatic fields.