Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
975 Research products, page 1 of 98

  • European Marine Science
  • Research software
  • Other research products
  • EU
  • RO
  • English

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Holcomb, Michael; McCorkle, Daniel C; Cohen, Anne L;
    Publisher: PANGAEA
    Project: EC | EPOCA (211384)

    Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.

  • Open Access English
    Authors: 
    Rampen, Sebastiaan W; Willmott, Verónica; Kim, Jung-Hyun; Rodrigo-Gámiz, Marta; Uliana, Eleonora; Mollenhauer, Gesine; Schefuß, Enno; Sinninghe Damsté, Jaap S; Schouten, Stefan;
    Publisher: PANGAEA
    Project: EC | PACEMAKER (226600)

    Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but also revealed uncertainties about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors like sea surface temperature (SST), salinity and nutrient concentrations. Previous cultivation efforts indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified in the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices in surface sediments show no relationship with annual mean SST of the overlying water. It remains unknown what determines the DSI, although our data suggests that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions of algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15-diols have previously been applied as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions.

  • Open Access English
    Authors: 
    Badger, Marcus P S; Chalk, Thomas B; Foster, Gavin L; Bown, Paul R; Gibbs, Samantha J; Sexton, Philip F; Schmidt, Daniela N; Pälike, Heiko; Mackensen, Andreas; Pancost, Richard D;
    Publisher: PANGAEA
    Project: UKRI | Timing, Causes and Conseq... (NE/H006273/1), EC | TGRES (340923)

    Atmospheric _p_CO~2~ is a critical component of the global carbon system and is considered to be the major control of Earth's past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document _p_CO~2~ for the past 800 kyrs, but at no point during this interval were CO~2~ levels higher than today. Interpretation of older _p_CO~2~ has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct _p_CO~2~: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ^11^B) of foraminifer shells. Here we present alkenone and δ^11^B-based _p_CO~2~ reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to _p_CO~2~ in the alkenone record compared to contemporaneous ice core and δ^11^B records, suggesting caution in the interpretation of alkenone-based records at low _p_CO~2~ levels. This is possibly caused by the physiology of CO~2~ uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of _p_CO~2~.

  • Open Access English
    Authors: 
    De Deckker, Patrick; Moros, Matthias; Blanz, Thomas; Schneider, Ralph R; Barrows, Timothy T; Perner, Kerstin;
    Publisher: PANGAEA
    Project: EC | ICE2ICE (610055)

    The data relate to a paper submitted to Quaternary Science Reviews. All the data support a study of the last 94 ka recorded in core MD03-2611 and an adjacent multicore MD03-MUC 3 taken on the fringe of one of the Murray Canyons offshore Kangaroo Island. Additional data pertain to core SS0206-GC15 taken offshore Victoria south of Warrnambool, but its record only spans the last 25ka. The records are at high resolution and cover a multitude of parameters. Radiocarbon dates for these cores are presented in the supplementary section of this paper.

  • Open Access English
    Authors: 
    Morris, K. J.; Herrera, S.; Gubili, C.; Tyler, P. A.; Rogers, A.; Hauton, C.;
    Project: EC | HERMIONE (226354)

    Despite being an abundant group of significant ecological importance the phylogenetic relationships of the Octocorallia remain poorly understood and very much understudied. We used 1132 bp of two mitochondrial protein-coding genes, nad2 and mtMutS (previously referred to as msh1), to construct a phylogeny for 161 octocoral specimens from the Atlantic, including both Isididae and non-Isididae species. We found that four clades were supported using a concatenated alignment. Two of these (A and B) were in general agreement with the of Holaxonia–Alcyoniina and Anthomastus–Corallium clades identified by previous work. The third and fourth clades represent a split of the Calcaxonia–Pennatulacea clade resulting in a clade containing the Pennatulacea and a small number of Isididae specimens and a second clade containing the remaining Calcaxonia. When individual genes were considered nad2 largely agreed with previous work with MtMutS also producing a fourth clade corresponding to a split of Isididae species from the Calcaxonia–Pennatulacea clade. It is expected these difference are a consequence of the inclusion of Isisdae species that have undergone a gene inversion in the mtMutS gene causing their separation in the MtMutS only tree. The fourth clade in the concatenated tree is also suspected to be a result of this gene inversion, as there were very few Isidiae species included in previous work tree and thus this separation would not be clearly resolved. A~larger phylogeny including both Isididae and non Isididae species is required to further resolve these clades.

  • Open Access English
    Authors: 
    Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;
    Project: EC | EPOCA (211384)

    Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary) since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA) which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.

  • Open Access English
    Authors: 
    Felden, Janine; Wenzhöfer, Frank; Boetius, Antje;
    Publisher: PANGAEA
    Project: EC | HERMIONE (226354)

    The Hakon Mosby Mud Volcano is a highly active methane seep hosting different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on in situ measurements of methane fluxes to and from these different habitats, in comparison to benthic methane and oxygen consumption rates. By quantifying in situ oxygen, methane, and sulfide fluxes in different habitats, a spatial budget covering areas of 10-1000 -m diameter was established. The range of dissolved methane efflux (770-2 mmol m-2 d-1) from the center to the outer rim was associated with a decrease in temperature gradients from 46°C to < 1°C m-1, indicating that spatial variations in fluid flow control the distribution of benthic habitats and activities. Accordingly, total oxygen uptake (TOU) varied between the different habitats by one order of magnitude from 15 mmol m-2 d-1 to 161 mmol m-2 d-1. High fluid flow rates appeared to suppress benthic activities by limiting the availability of electron acceptors. Accordingly, the highest TOU was associated with the lowest fluid flow and methane efflux. This was most likely due to the aerobic oxidation of methane, which may be more relevant as a sink for methane as previously considered in submarine ecosystems.

  • Open Access English
    Authors: 
    Borit, Melania; Weber, Charlotte; Johnsen, Hanne Risan;
    Publisher: Zenodo
    Project: EC | SAF21 (642080)

    Eurodoc Newsletter Issue #21

  • Open Access English
    Authors: 
    Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;
    Project: EC | PHOXY (278364)

    Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm Archipelago. Bottom water concentrations of oxygen and P are inversely correlated. This is attributed to the seasonal release of P from iron (Fe)-oxide-bound P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water, linked to prior deposition of organic-rich sediments in a low oxygen setting (legacy of hypoxia), hinders the formation of a larger Fe-oxide-bound P pool in winter. Burial rates of P are high at all sites (0.03–0.3 mol m−2 y−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (~ 30 to 50 μmol g−1). Organic P accounts for 30–50 % of reactive P burial. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink-switching of organic or Fe-oxide bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1), efficiently removing N as N2. Denitrification rates decrease seaward following the decline in bottom water nitrate and sediment organic carbon. Our results explain how sediments in this eutrophic coastal system can efficiently remove land-derived P and N, regardless of whether the bottom waters are oxic or frequently hypoxic. Hence, management strategies involving artificial reoxygenation are not expected to be successful in removing P and N, emphasizing a need for a focus on nutrient load reductions.

  • Open Access English
    Authors: 
    Westerhold, Thomas;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | MIONIÑO (796220), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | TiPES (820970), EC | EARTHSEQUENCING (617462)

    Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
975 Research products, page 1 of 98
  • Open Access English
    Authors: 
    Holcomb, Michael; McCorkle, Daniel C; Cohen, Anne L;
    Publisher: PANGAEA
    Project: EC | EPOCA (211384)

    Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.

  • Open Access English
    Authors: 
    Rampen, Sebastiaan W; Willmott, Verónica; Kim, Jung-Hyun; Rodrigo-Gámiz, Marta; Uliana, Eleonora; Mollenhauer, Gesine; Schefuß, Enno; Sinninghe Damsté, Jaap S; Schouten, Stefan;
    Publisher: PANGAEA
    Project: EC | PACEMAKER (226600)

    Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but also revealed uncertainties about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors like sea surface temperature (SST), salinity and nutrient concentrations. Previous cultivation efforts indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified in the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices in surface sediments show no relationship with annual mean SST of the overlying water. It remains unknown what determines the DSI, although our data suggests that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions of algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15-diols have previously been applied as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions.

  • Open Access English
    Authors: 
    Badger, Marcus P S; Chalk, Thomas B; Foster, Gavin L; Bown, Paul R; Gibbs, Samantha J; Sexton, Philip F; Schmidt, Daniela N; Pälike, Heiko; Mackensen, Andreas; Pancost, Richard D;
    Publisher: PANGAEA
    Project: UKRI | Timing, Causes and Conseq... (NE/H006273/1), EC | TGRES (340923)

    Atmospheric _p_CO~2~ is a critical component of the global carbon system and is considered to be the major control of Earth's past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document _p_CO~2~ for the past 800 kyrs, but at no point during this interval were CO~2~ levels higher than today. Interpretation of older _p_CO~2~ has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct _p_CO~2~: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ^11^B) of foraminifer shells. Here we present alkenone and δ^11^B-based _p_CO~2~ reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to _p_CO~2~ in the alkenone record compared to contemporaneous ice core and δ^11^B records, suggesting caution in the interpretation of alkenone-based records at low _p_CO~2~ levels. This is possibly caused by the physiology of CO~2~ uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of _p_CO~2~.

  • Open Access English
    Authors: 
    De Deckker, Patrick; Moros, Matthias; Blanz, Thomas; Schneider, Ralph R; Barrows, Timothy T; Perner, Kerstin;
    Publisher: PANGAEA
    Project: EC | ICE2ICE (610055)

    The data relate to a paper submitted to Quaternary Science Reviews. All the data support a study of the last 94 ka recorded in core MD03-2611 and an adjacent multicore MD03-MUC 3 taken on the fringe of one of the Murray Canyons offshore Kangaroo Island. Additional data pertain to core SS0206-GC15 taken offshore Victoria south of Warrnambool, but its record only spans the last 25ka. The records are at high resolution and cover a multitude of parameters. Radiocarbon dates for these cores are presented in the supplementary section of this paper.

  • Open Access English
    Authors: 
    Morris, K. J.; Herrera, S.; Gubili, C.; Tyler, P. A.; Rogers, A.; Hauton, C.;
    Project: EC | HERMIONE (226354)

    Despite being an abundant group of significant ecological importance the phylogenetic relationships of the Octocorallia remain poorly understood and very much understudied. We used 1132 bp of two mitochondrial protein-coding genes, nad2 and mtMutS (previously referred to as msh1), to construct a phylogeny for 161 octocoral specimens from the Atlantic, including both Isididae and non-Isididae species. We found that four clades were supported using a concatenated alignment. Two of these (A and B) were in general agreement with the of Holaxonia–Alcyoniina and Anthomastus–Corallium clades identified by previous work. The third and fourth clades represent a split of the Calcaxonia–Pennatulacea clade resulting in a clade containing the Pennatulacea and a small number of Isididae specimens and a second clade containing the remaining Calcaxonia. When individual genes were considered nad2 largely agreed with previous work with MtMutS also producing a fourth clade corresponding to a split of Isididae species from the Calcaxonia–Pennatulacea clade. It is expected these difference are a consequence of the inclusion of Isisdae species that have undergone a gene inversion in the mtMutS gene causing their separation in the MtMutS only tree. The fourth clade in the concatenated tree is also suspected to be a result of this gene inversion, as there were very few Isidiae species included in previous work tree and thus this separation would not be clearly resolved. A~larger phylogeny including both Isididae and non Isididae species is required to further resolve these clades.

  • Open Access English
    Authors: 
    Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;
    Project: EC | EPOCA (211384)

    Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary) since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA) which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.

  • Open Access English
    Authors: 
    Felden, Janine; Wenzhöfer, Frank; Boetius, Antje;
    Publisher: PANGAEA
    Project: EC | HERMIONE (226354)

    The Hakon Mosby Mud Volcano is a highly active methane seep hosting different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on in situ measurements of methane fluxes to and from these different habitats, in comparison to benthic methane and oxygen consumption rates. By quantifying in situ oxygen, methane, and sulfide fluxes in different habitats, a spatial budget covering areas of 10-1000 -m diameter was established. The range of dissolved methane efflux (770-2 mmol m-2 d-1) from the center to the outer rim was associated with a decrease in temperature gradients from 46°C to < 1°C m-1, indicating that spatial variations in fluid flow control the distribution of benthic habitats and activities. Accordingly, total oxygen uptake (TOU) varied between the different habitats by one order of magnitude from 15 mmol m-2 d-1 to 161 mmol m-2 d-1. High fluid flow rates appeared to suppress benthic activities by limiting the availability of electron acceptors. Accordingly, the highest TOU was associated with the lowest fluid flow and methane efflux. This was most likely due to the aerobic oxidation of methane, which may be more relevant as a sink for methane as previously considered in submarine ecosystems.

  • Open Access English
    Authors: 
    Borit, Melania; Weber, Charlotte; Johnsen, Hanne Risan;
    Publisher: Zenodo
    Project: EC | SAF21 (642080)

    Eurodoc Newsletter Issue #21

  • Open Access English
    Authors: 
    Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;
    Project: EC | PHOXY (278364)

    Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm Archipelago. Bottom water concentrations of oxygen and P are inversely correlated. This is attributed to the seasonal release of P from iron (Fe)-oxide-bound P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water, linked to prior deposition of organic-rich sediments in a low oxygen setting (legacy of hypoxia), hinders the formation of a larger Fe-oxide-bound P pool in winter. Burial rates of P are high at all sites (0.03–0.3 mol m−2 y−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (~ 30 to 50 μmol g−1). Organic P accounts for 30–50 % of reactive P burial. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink-switching of organic or Fe-oxide bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1), efficiently removing N as N2. Denitrification rates decrease seaward following the decline in bottom water nitrate and sediment organic carbon. Our results explain how sediments in this eutrophic coastal system can efficiently remove land-derived P and N, regardless of whether the bottom waters are oxic or frequently hypoxic. Hence, management strategies involving artificial reoxygenation are not expected to be successful in removing P and N, emphasizing a need for a focus on nutrient load reductions.

  • Open Access English
    Authors: 
    Westerhold, Thomas;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | MIONIÑO (796220), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | TiPES (820970), EC | EARTHSEQUENCING (617462)

    Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.