Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Rural Digital Europe
  • Other research products
  • European Marine Science

Date (most recent)
arrow_drop_down
  • Authors: Picciulin, Marta; Bolgan, Marta; Rako‐gospić, Nikolina; Petrizzo, Antonio; +2 Authors

    Spatio‐temporal variability of marine soundscapes reflects environmental dynamics and local habitat health. This study characterizes the coastal soundscape of the Cres‐Lošinj Natura 2000 Site of Community Importance, encompassing the non‐tourist (11–15 March 2020) and the tourist (26–30 July 2020) season. A total of 240 h of continuous recordings were manually analyzed and the abundance of animal vocalizations and boat noise was obtained; sound pressure levels were calculated for the low (63–2000 Hz) and high (2000–20,000 Hz) frequency range. Two fish sound types were drivers of both seasonal and diel variability of the low‐frequency soundscape. The first is emitted by the cryptic Roche’s snake blenny (Ophidion rochei), while the second, whose emitter remains unknown, was previously only described in canyons and coralligenous habitats of the Western Mediterranean Sea. The high‐frequency bands were characterized by bottlenose dolphin (Tursiops truncatus) vocalizations, indicating dolphins’ use of area for various purposes. Boat noise, however, dominated the local soundscape along the whole considered periods and higher sound pressure levels were found during the Tourist season. Human‐generated noise pollution, which has been previously found 10 years ago, is still present in the area and this urges management actions. Interreg Italy-Croatia CBC Programme

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Piñero García, Francisco;

    Activity concentration of natural radioactivity (238U, 234U, 226Ra, 210Po) and 137Cs in organs and tissue of wild European perch from lake Fiolen and lake Fysingen. The activity is showed in Bq/kg in fresh weight. The samples of European perch (Perca fluviatilis) consisted of 39 individuals caught in Lake Fiolen and 95 individuals caught in Lake Fysingen during 2020. The sample collection was performed by the Swedish Museum of Natural History and the samples were provided as a loan from their sample bank Environmental Specimen Bank. The data consists of the mean measurements of the radioactive elements in different anatomical regions of the perch samples. Cesium-137 content could not be measured in the fins of the samples from Lake Fysingen, resulting in a missing value. The data is available as an Excel file and as a semicolon-separated .csv. Aktivitetskoncentration av naturlig radioaktivitet (238U, 234U, 226Ra, 210Po) och 137Cs i organ och vävnader hos vild europeisk abborre från insjöarna Fiolen och Fysingen. Aktiviteten visas i Bq/kg i färskvikt. Proverna av aborre (Perca fluviatilis) utgjordes av 39 individer infångade i Fiolen och 95 individer infångade i Fysingen under 2020. Insamlingen gjordes av Naturhistoriska riksmuséet och proverna har lånats ur Miljöprovbanken. Datasammanställningen består av det uppmätta medelvärdet av de radioaktiva ämnena i olika anatomiska regioner av aborrproverna. För proverna från Fysingen var det inte möjligt att uppmäta Cesium-137 i fenorna och detta medelvärde saknas därför i dataunderlaget. Data finns tillgänglig i Excel-format och som semikolonseparerad .csv.

    CESSDAarrow_drop_down
    CESSDA
    Other ORP type . 2022
    Data sources: B2FIND
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CESSDAarrow_drop_down
      CESSDA
      Other ORP type . 2022
      Data sources: B2FIND
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: CSIC - Departamento de Comunicación;

    Head of Communication: Abel Grau; Editorial board: Esther M. García Pastor, Alejandro Parrilla García; Writers: Lucía Casas Piñeiro, Isidoro García Cano, Esther M. García Pastor, Carmen Fernández, Ana Iglesias, Mónica Lara del Vigo, Silbia López de Lacalle, Víctor Lloret Blackburn, Alejandro Parrilla García, Belén Remacha; Photography: César Hernández, Álvaro Muñoz Guzmán, Joan Costa, Artur Martínez y Pau Franch; Translation: Fabiola Barraclough. This special issue of ‘CSIC Investiga. Journal of Science’ shows the performance of the Spanish National Research Council (CSIC) within the EU R&D framewok programme Horizon 2020. It presents reportages on research projects about Qur’an heritage in Europe, the exploration of Mars, the new robots that assist people, more efficient parasites controls in fishery, new sustainable packaging, methods to trace asymptomatic tuberculosis transmisión, and the historic legacy of the Senegal’s region of Pathiana, among others. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martí, Aniol; Portell de Mora, Jordi; Amblàs Novellas, David; Cabrera Estanyol, Ferran de; +3 Authors

    Over the past decade, Multibeam Echosounders (MBES) have become one of the most used techniques in sea exploration. Modern MBES are capable of acquiring both bathymetric information on the seafloor and the reflectivity of the seafloor and water column. Water column imaging MBES surveys acquire significant amounts of data with rates that can exceed several GB/h depending on the ping rate. These large file sizes obtained from recording the full water column backscatter make remote transmission difficult if not prohibitive with current technology and bandwidth limitations. In this paper, we propose an algorithm to decorrelate water column and bathymetry data, focusing on the KMALL format released by Kongsberg Maritime in 2019. The pre-processing stage is integrated into FAPEC, a data compressor originally designed for space missions. Here, we test the algorithm with three different datasets: two of them provided by Kongsberg Maritime and one dataset from the Gulf of Mexico provided by Fugro USA Marine. We show that FAPEC achieves good compression ratios at high speeds using the pre-processing stage proposed in this paper. We also show the advantages of FAPEC over other lossless compressors as well as the quality of the reconstructed water column image after lossy compression at different levels. Lastly, we test the performance of the pre-processing stage, without the constraint of an entropy encoder, by means of the histograms of the original samples and the prediction errors. This work was (partially) funded by the ERDF (a way of making Europe) by the European Union through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia María de Maeztu) through grant CEX2019-000918-M, the Spanish State Research Agency (PID2020-114322RBI00), the European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 658358), the Catalan Government Excellence Research Groups Grant to GRC Geociències Marines (ref. 2017 SGR 315), the Spanish Ministry of Science and Innovation project RODIN (PID2019-105717RB-C22/AEI/10.13039/501100011033), and Fellowship FI 2019 by the Secretary for University and Research of the Generalitat de Catalunya and the European Social Fund. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Amani, Meisam; Moghimi, Armin; Mirmazloumi, Seyedmohammad; Ranjgar, Babak; +12 Authors

    Oceans cover over 70% of the Earth’s surface and provide numerous services to humans and the environment. Therefore, it is crucial to monitor these valuable assets using advanced technologies. In this regard, Remote Sensing (RS) provides a great opportunity to study different oceanographic parameters using archived consistent multitemporal datasets in a cost-efficient approach. So far, various types of RS techniques have been developed and utilized for different oceanographic appli- cations. In this study, 15 applications of RS in the ocean using different RS techniques and systems are comprehensively reviewed and discussed. This study is divided into two parts to supply more detailed information about each application. The first part briefly discusses 12 different RS systems that are often employed for ocean studies. Then, six applications of these systems in the ocean, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD), are provided. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed. The other nine applications, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery, are provided in Part II of this study. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Raja, Maria||; Rosell Melé, Antoni||;

    Unidad de excelencia María de Maeztu CEX2019-000940-M This dataset contains supporting information for "Quantitative link between sedimentary chlorin and sea-surface chlorophyll-a". The dataset consists of global oceanic biogeochemical data from sea-surface, water column and surface sediments. The dataset includes sedimentary chlorin and sea-surface chlorophyll concentration, total organic carbon content, oxygen concentration and mass accumulation rate, among other biogeochemical parameters.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dipòsit Digital de D...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dipòsit Digital de D...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rodríguez-Ros, Pablo; Gali Tapias, Martí; Cortés, Pau; Robinson, Charlotte Mary; +4 Authors

    This research was funded by the Spanish Ministry of Economy and Competitiveness through projects PEGASO (CTM2012‐37615) and BIOGAPS (CTM2016‐81008‐R) to R. S., and partially by the Australian Government through the Australian Research Council's Discovery Projects funding scheme (project DP160103387). The Antarctic Circumnavigation Expedition was made possible by funding from the Swiss Polar Institute and Ferring Pharmaceuticals. P. R. R. was supported by a “la Caixa” Foundation PhD Fellowship (2015–2019). Members of the ACE#1 research team are greatly acknowledged for providing data and technical support. We are grateful to NASA's Ocean Biology Processing Group (OBPG) for MODIS Aqua data and to the British Oceanographic Data Centre (BODC). We thank R. Wanninkhof (NOAA/AOML) and J. Trianes (Universidade de Santiago de Compostela) for providing the CCMP2 monthly climatology. P. R. R. would like to thank M. Babin, M. Levasseur, and M. Lizotte for hosting and training him at Takuvik Joint International Laboratory (Université Laval (Canada) CNRS (France)) during 2016. We also want to thank the Captain, officers, and crew of RV Hespérides and RV Akademik Tryoshnikov, engineers of the Marine Technology Unit (CSIC), and research colleagues for their support and help during the cruises. Isoprene produced by marine phytoplankton acts as a precursor of secondary organic aerosol and thereby affects cloud formation and brightness over the remote oceans. Yet the marine isoprene emission is poorly constrained, with discrepancies among estimates that reach 2 orders of magnitude. Here we present ISOREMS, the first satellite‐only based algorithm for the retrieval of isoprene concentration in the Southern Ocean. Sea surface concentrations from six cruises were matched with remotely sensed variables from MODIS Aqua, and isoprene was best predicted by multiple linear regression with chlorophyll a and sea surface temperature. Climatological (2002–2018) isoprene distributions computed with ISOREMS revealed high concentrations in coastal and near‐island waters, and within the 40–50°S latitudinal band. Isoprene seasonality paralleled phytoplankton productivity, with annual maxima in summer. The annual Southern Ocean emission of isoprene was estimated at 63 Gg C yr−1. The algorithm can provide spatially and temporally realistic inputs to atmospheric and climate models. Peer Reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: TEBBY, Cleo; BROCHOT, Céline; DORNE, Jean-Lou C.M.; BEAUDOIN, Rémy;

    The R codes with the DOI: 10.5281/zenodo.2609136 presented here constitute a generic physiologically-based model for mixtures with a toxicodynamic interaction designed to model the interaction between melamine (MEL) and cyanuric acid (CYA) in the kidney or in urine in rainbow trout (Oncorhynchus mykiss). The implementation of the models using case studies is described in Tebby et al. (2019). The R codes are provided for: R code for PBTK/TD modelling of a mixture of MEL and CYA with formation of crystals either in kidney or in urine (2 model files), R code for determination of partition coefficient using Quantitative Structure Activity Relationship (QSAR) models, Increase in body weight as a function of time, Parameterisation of the model for male Rainbow trout (Onchorhynchus mykiss) (2 files for calling either the urine or kidney PBTK/TD model file. Compared to the initial PBTK model described in (Grech et al., 2018; DOI: 10.5281/zenodo.1414332), effect of temperature on renal excretion rate and oral absorption rates was added to the TK part of the model. The toxicodynamic interaction is modelled as a two-step process: formation of MEL-CYA complex in kidney from neutral forms of MEL and CYA, formation of MEL-CYA crystals by precipitation of the complex. The full data collection and implementation of the models using case studies are described in Tebby et al. (2019) (https://doi.org/10.1016/j.taap.2019.03.021) The tools are implemented in R. The model was developed using R software (version 3.3.3). EU; R; Cleo.TEBBY@ineris.fr

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2019
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2019
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2019
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2019
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mangiacrapa F.; Perciante C.;

    The gCube Data Catalogue is a software component that provides facilities for: a) (meta)data publishing; b) vres' products publishing; c) making data products publicly available; d) enriching products of metadata to maximise their potential reuse and making them searchable (via title, tags etc) are based on the CKAN technology. The gcube-ckan-datacatalog Web Application allows to (a) show all the metadata available in the CKAN instance, as well as publish a new product, retrieve the list of organizations (i.e. Virtual Research Environments) to which the user belongs and his/her already published products.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Mangiacrapa F.;

    The gCube Workspace environment represents a collaborative area in which users can save, exchange, share, create public links and organize information objects (files) according to their specific needs. Because of this, every user of any Virtual Research Environment in the D4Science Infrastructure is provided with this area.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
  • Authors: Picciulin, Marta; Bolgan, Marta; Rako‐gospić, Nikolina; Petrizzo, Antonio; +2 Authors

    Spatio‐temporal variability of marine soundscapes reflects environmental dynamics and local habitat health. This study characterizes the coastal soundscape of the Cres‐Lošinj Natura 2000 Site of Community Importance, encompassing the non‐tourist (11–15 March 2020) and the tourist (26–30 July 2020) season. A total of 240 h of continuous recordings were manually analyzed and the abundance of animal vocalizations and boat noise was obtained; sound pressure levels were calculated for the low (63–2000 Hz) and high (2000–20,000 Hz) frequency range. Two fish sound types were drivers of both seasonal and diel variability of the low‐frequency soundscape. The first is emitted by the cryptic Roche’s snake blenny (Ophidion rochei), while the second, whose emitter remains unknown, was previously only described in canyons and coralligenous habitats of the Western Mediterranean Sea. The high‐frequency bands were characterized by bottlenose dolphin (Tursiops truncatus) vocalizations, indicating dolphins’ use of area for various purposes. Boat noise, however, dominated the local soundscape along the whole considered periods and higher sound pressure levels were found during the Tourist season. Human‐generated noise pollution, which has been previously found 10 years ago, is still present in the area and this urges management actions. Interreg Italy-Croatia CBC Programme

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Piñero García, Francisco;

    Activity concentration of natural radioactivity (238U, 234U, 226Ra, 210Po) and 137Cs in organs and tissue of wild European perch from lake Fiolen and lake Fysingen. The activity is showed in Bq/kg in fresh weight. The samples of European perch (Perca fluviatilis) consisted of 39 individuals caught in Lake Fiolen and 95 individuals caught in Lake Fysingen during 2020. The sample collection was performed by the Swedish Museum of Natural History and the samples were provided as a loan from their sample bank Environmental Specimen Bank. The data consists of the mean measurements of the radioactive elements in different anatomical regions of the perch samples. Cesium-137 content could not be measured in the fins of the samples from Lake Fysingen, resulting in a missing value. The data is available as an Excel file and as a semicolon-separated .csv. Aktivitetskoncentration av naturlig radioaktivitet (238U, 234U, 226Ra, 210Po) och 137Cs i organ och vävnader hos vild europeisk abborre från insjöarna Fiolen och Fysingen. Aktiviteten visas i Bq/kg i färskvikt. Proverna av aborre (Perca fluviatilis) utgjordes av 39 individer infångade i Fiolen och 95 individer infångade i Fysingen under 2020. Insamlingen gjordes av Naturhistoriska riksmuséet och proverna har lånats ur Miljöprovbanken. Datasammanställningen består av det uppmätta medelvärdet av de radioaktiva ämnena i olika anatomiska regioner av aborrproverna. För proverna från Fysingen var det inte möjligt att uppmäta Cesium-137 i fenorna och detta medelvärde saknas därför i dataunderlaget. Data finns tillgänglig i Excel-format och som semikolonseparerad .csv.

    CESSDAarrow_drop_down
    CESSDA
    Other ORP type . 2022
    Data sources: B2FIND
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CESSDAarrow_drop_down
      CESSDA
      Other ORP type . 2022
      Data sources: B2FIND
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: CSIC - Departamento de Comunicación;

    Head of Communication: Abel Grau; Editorial board: Esther M. García Pastor, Alejandro Parrilla García; Writers: Lucía Casas Piñeiro, Isidoro García Cano, Esther M. García Pastor, Carmen Fernández, Ana Iglesias, Mónica Lara del Vigo, Silbia López de Lacalle, Víctor Lloret Blackburn, Alejandro Parrilla García, Belén Remacha; Photography: César Hernández, Álvaro Muñoz Guzmán, Joan Costa, Artur Martínez y Pau Franch; Translation: Fabiola Barraclough. This special issue of ‘CSIC Investiga. Journal of Science’ shows the performance of the Spanish National Research Council (CSIC) within the EU R&D framewok programme Horizon 2020. It presents reportages on research projects about Qur’an heritage in Europe, the exploration of Mars, the new robots that assist people, more efficient parasites controls in fishery, new sustainable packaging, methods to trace asymptomatic tuberculosis transmisión, and the historic legacy of the Senegal’s region of Pathiana, among others. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martí, Aniol; Portell de Mora, Jordi; Amblàs Novellas, David; Cabrera Estanyol, Ferran de; +3 Authors

    Over the past decade, Multibeam Echosounders (MBES) have become one of the most used techniques in sea exploration. Modern MBES are capable of acquiring both bathymetric information on the seafloor and the reflectivity of the seafloor and water column. Water column imaging MBES surveys acquire significant amounts of data with rates that can exceed several GB/h depending on the ping rate. These large file sizes obtained from recording the full water column backscatter make remote transmission difficult if not prohibitive with current technology and bandwidth limitations. In this paper, we propose an algorithm to decorrelate water column and bathymetry data, focusing on the KMALL format released by Kongsberg Maritime in 2019. The pre-processing stage is integrated into FAPEC, a data compressor originally designed for space missions. Here, we test the algorithm with three different datasets: two of them provided by Kongsberg Maritime and one dataset from the Gulf of Mexico provided by Fugro USA Marine. We show that FAPEC achieves good compression ratios at high speeds using the pre-processing stage proposed in this paper. We also show the advantages of FAPEC over other lossless compressors as well as the quality of the reconstructed water column image after lossy compression at different levels. Lastly, we test the performance of the pre-processing stage, without the constraint of an entropy encoder, by means of the histograms of the original samples and the prediction errors. This work was (partially) funded by the ERDF (a way of making Europe) by the European Union through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia María de Maeztu) through grant CEX2019-000918-M, the Spanish State Research Agency (PID2020-114322RBI00), the European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 658358), the Catalan Government Excellence Research Groups Grant to GRC Geociències Marines (ref. 2017 SGR 315), the Spanish Ministry of Science and Innovation project RODIN (PID2019-105717RB-C22/AEI/10.13039/501100011033), and Fellowship FI 2019 by the Secretary for University and Research of the Generalitat de Catalunya and the European Social Fund. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Amani, Meisam; Moghimi, Armin; Mirmazloumi, Seyedmohammad; Ranjgar, Babak; +12 Authors

    Oceans cover over 70% of the Earth’s surface and provide numerous services to humans and the environment. Therefore, it is crucial to monitor these valuable assets using advanced technologies. In this regard, Remote Sensing (RS) provides a great opportunity to study different oceanographic parameters using archived consistent multitemporal datasets in a cost-efficient approach. So far, various types of RS techniques have been developed and utilized for different oceanographic appli- cations. In this study, 15 applications of RS in the ocean using different RS techniques and systems are comprehensively reviewed and discussed. This study is divided into two parts to supply more detailed information about each application. The first part briefly discusses 12 different RS systems that are often employed for ocean studies. Then, six applications of these systems in the ocean, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD), are provided. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed. The other nine applications, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery, are provided in Part II of this study. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Raja, Maria||; Rosell Melé, Antoni||;

    Unidad de excelencia María de Maeztu CEX2019-000940-M This dataset contains supporting information for "Quantitative link between sedimentary chlorin and sea-surface chlorophyll-a". The dataset consists of global oceanic biogeochemical data from sea-surface, water column and surface sediments. The dataset includes sedimentary chlorin and sea-surface chlorophyll concentration, total organic carbon content, oxygen concentration and mass accumulation rate, among other biogeochemical parameters.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dipòsit Digital de D...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dipòsit Digital de D...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rodríguez-Ros, Pablo; Gali Tapias, Martí; Cortés, Pau; Robinson, Charlotte Mary; +4 Authors

    This research was funded by the Spanish Ministry of Economy and Competitiveness through projects PEGASO (CTM2012‐37615) and BIOGAPS (CTM2016‐81008‐R) to R. S., and partially by the Australian Government through the Australian Research Council's Discovery Projects funding scheme (project DP160103387). The Antarctic Circumnavigation Expedition was made possible by funding from the Swiss Polar Institute and Ferring Pharmaceuticals. P. R. R. was supported by a “la Caixa” Foundation PhD Fellowship (2015–2019). Members of the ACE#1 research team are greatly acknowledged for providing data and technical support. We are grateful to NASA's Ocean Biology Processing Group (OBPG) for MODIS Aqua data and to the British Oceanographic Data Centre (BODC). We thank R. Wanninkhof (NOAA/AOML) and J. Trianes (Universidade de Santiago de Compostela) for providing the CCMP2 monthly climatology. P. R. R. would like to thank M. Babin, M. Levasseur, and M. Lizotte for hosting and training him at Takuvik Joint International Laboratory (Université Laval (Canada) CNRS (France)) during 2016. We also want to thank the Captain, officers, and crew of RV Hespérides and RV Akademik Tryoshnikov, engineers of the Marine Technology Unit (CSIC), and research colleagues for their support and help during the cruises. Isoprene produced by marine phytoplankton acts as a precursor of secondary organic aerosol and thereby affects cloud formation and brightness over the remote oceans. Yet the marine isoprene emission is poorly constrained, with discrepancies among estimates that reach 2 orders of magnitude. Here we present ISOREMS, the first satellite‐only based algorithm for the retrieval of isoprene concentration in the Southern Ocean. Sea surface concentrations from six cruises were matched with remotely sensed variables from MODIS Aqua, and isoprene was best predicted by multiple linear regression with chlorophyll a and sea surface temperature. Climatological (2002–2018) isoprene distributions computed with ISOREMS revealed high concentrations in coastal and near‐island waters, and within the 40–50°S latitudinal band. Isoprene seasonality paralleled phytoplankton productivity, with annual maxima in summer. The annual Southern Ocean emission of isoprene was estimated at 63 Gg C yr−1. The algorithm can provide spatially and temporally realistic inputs to atmospheric and climate models. Peer Reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: TEBBY, Cleo; BROCHOT, Céline; DORNE, Jean-Lou C.M.; BEAUDOIN, Rémy;

    The R codes with the DOI: 10.5281/zenodo.2609136 presented here constitute a generic physiologically-based model for mixtures with a toxicodynamic interaction designed to model the interaction between melamine (MEL) and cyanuric acid (CYA) in the kidney or in urine in rainbow trout (Oncorhynchus mykiss). The implementation of the models using case studies is described in Tebby et al. (2019). The R codes are provided for: R code for PBTK/TD modelling of a mixture of MEL and CYA with formation of crystals either in kidney or in urine (2 model files), R code for determination of partition coefficient using Quantitative Structure Activity Relationship (QSAR) models, Increase in body weight as a function of time, Parameterisation of the model for male Rainbow trout (Onchorhynchus mykiss) (2 files for calling either the urine or kidney PBTK/TD model file. Compared to the initial PBTK model described in (Grech et al., 2018; DOI: 10.5281/zenodo.1414332), effect of temperature on renal excretion rate and oral absorption rates was added to the TK part of the model. The toxicodynamic interaction is modelled as a two-step process: formation of MEL-CYA complex in kidney from neutral forms of MEL and CYA, formation of MEL-CYA crystals by precipitation of the complex. The full data collection and implementation of the models using case studies are described in Tebby et al. (2019) (https://doi.org/10.1016/j.taap.2019.03.021) The tools are implemented in R. The model was developed using R software (version 3.3.3). EU; R; Cleo.TEBBY@ineris.fr

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2019
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2019
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2019
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2019
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mangiacrapa F.; Perciante C.;

    The gCube Data Catalogue is a software component that provides facilities for: a) (meta)data publishing; b) vres' products publishing; c) making data products publicly available; d) enriching products of metadata to maximise their potential reuse and making them searchable (via title, tags etc) are based on the CKAN technology. The gcube-ckan-datacatalog Web Application allows to (a) show all the metadata available in the CKAN instance, as well as publish a new product, retrieve the list of organizations (i.e. Virtual Research Environments) to which the user belongs and his/her already published products.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Mangiacrapa F.;

    The gCube Workspace environment represents a collaborative area in which users can save, exchange, share, create public links and organize information objects (files) according to their specific needs. Because of this, every user of any Virtual Research Environment in the D4Science Infrastructure is provided with this area.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA