- home
- Advanced Search
Filters
Clear AllLoading
apps Other research product2021 English EC | ICE2ICEPlach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 United Kingdom, Austria EnglishCampaign for Nature EC | BIGSEA, EC | TRIATLASWaldron, A.; Adams, V.; Allan, J.; Arnell, A.; Asner, G.; Atkinson, S.; Baccini, A.; Baillie, J.; Balmford, A.; Austin Beau, J.; Brander, L.; Brondizio, E.; Bruner, A.; Burgess, N.; Burkart, K.; Butchart, S.; Button, R.; Carrasco, R.; Cheung, W.; Christensen, V.; Clements, A.; Coll, M.; di Marco, M.; Deguignet, M.; Dinerstein, E.; Ellis, E.; Eppink, F.; Ervin, J.; Escobedo, A.; Fa, J.; Fernandes-Llamazares, A.; Fernando, S.; Fujimori, S.; Fulton, B.; Garnett, S.; Gerber, J.; Gill, D.; Gopalakrishna, T.; Hahn, N.; Halpern, B.; Hasegawa, T.; Havlik, P.; Heikinheimo, V.; Heneghan, R.; Henry, E.; Humpenoder, F.; Jonas, H.; Jones, K.; Joppa, L.; Joshi, A.; Jung, M.; Kingston, N.; Klein, C.; Krisztin, T.; Lam, V.; Leclere, D.; Lindsey, P.; Locke, H.; Lovejoy, T.; Madgwick, P.; Malhi, Y.; Malmer, P.; Maron, M.; Mayorga, J.; van Meijl, H.; Miller, D.; Molnar, Z.; Mueller, N.; Mukherjee, N.; Naidoo, R.; Nakamura, K.; Nepal, P.; Noss, R.; O’Leary, B.; Olson, D.; Palcios Abrantes, J.; Paxton, M.; Popp, A.; Possingham, H.; Prestemon, J.; Reside, A.; Robinson, C.; Robinson, J.; Sala, E.; Scherrer, K.; Spalding, M.; Spenceley, A.; Steenbeck, J.; Stehfest, E.; Strassborg, B.; Sumaila, R.; Swinnerton, K.; Sze, J.; Tittensor, D.; Toivonen, T.; Toledo, A.; Negret Torres, P.; Van Zeist, W.; Vause, J.; Venter, O.; Vilela, T.; Visconti, P.; Vynne, C.; Watson, R.; Watson, J.; Wikramanayake, E.; Williams, B.; Wintle, B.; Woodley, S.; Wu, W.; Zander, K.; Zhang, Y.; Zhang, Y.;Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::3fd59585b40ea4ea59b180a6d756882d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::3fd59585b40ea4ea59b180a6d756882d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 EC | PAGE21Chadburn Sarah; Krinner Gerhard; Porada Philipp; Bartsch Annett; Beer Christian; Belelli Marchesini Luca; Boike Julia; Ekici Altug; Elberling Bo; Friborg Thomas; Hugelius Gustaf; Johansson Margareta; Kuhry Peter; Kutzbach Lars; Langer Moritz; Lund Magnus; Parmentier Frans-Jan W; Peng Shushi; van Huissteden Jacobus (Ko); Wang Tao; Westermann Sebastian; Zhu Dan; Burke Eleanor J;It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2015 Austria, Germany EnglishNPE, IPEA, IIASA, UNEP-WCMC Camara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; Havlik, P.; Pirker, J.; Kraxner, F.; Obersteiner, M.; Kapos, V.; Affonso, A.; Espindola, G.; Bocqueho, G.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::e9258e192e1b0a1b4b6f017ce04c7f86&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::e9258e192e1b0a1b4b6f017ce04c7f86&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2011 GermanyVienna University of Technology (Institute of Photogrammetry and Remote Sensing) Authors: Bartsch, Annett; Naeimi, Vahid; Melzer, Thomas;Bartsch, Annett; Naeimi, Vahid; Melzer, Thomas;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0aa8c49bb2eb8feb7627c41d1dcfa87f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0aa8c49bb2eb8feb7627c41d1dcfa87f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2010 GermanyInstitut für Meteorologie und Geophysik der Universität Innsbruck Authors: Stocker-Waldhuber, Martin;Stocker-Waldhuber, Martin;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d03ee9255ea275bc03a7dd860df66806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d03ee9255ea275bc03a7dd860df66806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research product2021 English EC | ICE2ICEPlach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 United Kingdom, Austria EnglishCampaign for Nature EC | BIGSEA, EC | TRIATLASWaldron, A.; Adams, V.; Allan, J.; Arnell, A.; Asner, G.; Atkinson, S.; Baccini, A.; Baillie, J.; Balmford, A.; Austin Beau, J.; Brander, L.; Brondizio, E.; Bruner, A.; Burgess, N.; Burkart, K.; Butchart, S.; Button, R.; Carrasco, R.; Cheung, W.; Christensen, V.; Clements, A.; Coll, M.; di Marco, M.; Deguignet, M.; Dinerstein, E.; Ellis, E.; Eppink, F.; Ervin, J.; Escobedo, A.; Fa, J.; Fernandes-Llamazares, A.; Fernando, S.; Fujimori, S.; Fulton, B.; Garnett, S.; Gerber, J.; Gill, D.; Gopalakrishna, T.; Hahn, N.; Halpern, B.; Hasegawa, T.; Havlik, P.; Heikinheimo, V.; Heneghan, R.; Henry, E.; Humpenoder, F.; Jonas, H.; Jones, K.; Joppa, L.; Joshi, A.; Jung, M.; Kingston, N.; Klein, C.; Krisztin, T.; Lam, V.; Leclere, D.; Lindsey, P.; Locke, H.; Lovejoy, T.; Madgwick, P.; Malhi, Y.; Malmer, P.; Maron, M.; Mayorga, J.; van Meijl, H.; Miller, D.; Molnar, Z.; Mueller, N.; Mukherjee, N.; Naidoo, R.; Nakamura, K.; Nepal, P.; Noss, R.; O’Leary, B.; Olson, D.; Palcios Abrantes, J.; Paxton, M.; Popp, A.; Possingham, H.; Prestemon, J.; Reside, A.; Robinson, C.; Robinson, J.; Sala, E.; Scherrer, K.; Spalding, M.; Spenceley, A.; Steenbeck, J.; Stehfest, E.; Strassborg, B.; Sumaila, R.; Swinnerton, K.; Sze, J.; Tittensor, D.; Toivonen, T.; Toledo, A.; Negret Torres, P.; Van Zeist, W.; Vause, J.; Venter, O.; Vilela, T.; Visconti, P.; Vynne, C.; Watson, R.; Watson, J.; Wikramanayake, E.; Williams, B.; Wintle, B.; Woodley, S.; Wu, W.; Zander, K.; Zhang, Y.; Zhang, Y.;Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::3fd59585b40ea4ea59b180a6d756882d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::3fd59585b40ea4ea59b180a6d756882d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 EC | PAGE21Chadburn Sarah; Krinner Gerhard; Porada Philipp; Bartsch Annett; Beer Christian; Belelli Marchesini Luca; Boike Julia; Ekici Altug; Elberling Bo; Friborg Thomas; Hugelius Gustaf; Johansson Margareta; Kuhry Peter; Kutzbach Lars; Langer Moritz; Lund Magnus; Parmentier Frans-Jan W; Peng Shushi; van Huissteden Jacobus (Ko); Wang Tao; Westermann Sebastian; Zhu Dan; Burke Eleanor J;It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2015 Austria, Germany EnglishNPE, IPEA, IIASA, UNEP-WCMC Camara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Andrade, P.; Souza, R.S.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; Havlik, P.; Pirker, J.; Kraxner, F.; Obersteiner, M.; Kapos, V.; Affonso, A.; Espindola, G.; Bocqueho, G.;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::e9258e192e1b0a1b4b6f017ce04c7f86&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3535::e9258e192e1b0a1b4b6f017ce04c7f86&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2011 GermanyVienna University of Technology (Institute of Photogrammetry and Remote Sensing) Authors: Bartsch, Annett; Naeimi, Vahid; Melzer, Thomas;Bartsch, Annett; Naeimi, Vahid; Melzer, Thomas;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0aa8c49bb2eb8feb7627c41d1dcfa87f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0aa8c49bb2eb8feb7627c41d1dcfa87f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2010 GermanyInstitut für Meteorologie und Geophysik der Universität Innsbruck Authors: Stocker-Waldhuber, Martin;Stocker-Waldhuber, Martin;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d03ee9255ea275bc03a7dd860df66806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::d03ee9255ea275bc03a7dd860df66806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu