Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
35 Research products, page 1 of 4

  • European Marine Science
  • Other research products
  • 2013-2022
  • CH
  • BM
  • English

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Benedetti, Fabio;
    Publisher: JETZON - investigating the Ocean's Twilight Zone
    Country: Switzerland
    Project: EC | AtlantECO (862923)
  • Open Access English
    Authors: 
    Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;
    Project: EC | ICE2ICE (610055)

    This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.

  • Open Access English
    Authors: 
    Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;
    Project: EC | PHOXY (278364), NWO | Response of the Iron Biog... (2300182111)

    Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm archipelago. Bottom water concentrations of oxygen (O2) and P are inversely correlated. This is attributed to the seasonal release of P from iron-oxide-bound (Fe-oxide-bound) P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water and its high upward flux towards the sediment surface (∼4 to 8 mmol m−2 d−1), linked to prior deposition of organic-rich sediments in a low-O2 setting (“legacy of hypoxia”), hinder the formation of a larger Fe-oxide-bound P pool in winter. This is most pronounced at sites where water column mixing is naturally relatively low and where low bottom water O2 concentrations prevail in summer. Burial rates of P are high at all sites (0.03–0.3 mol m−2 yr−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (∼30 to 50 µmol g−1). Sedimentary P is dominated by Fe-bound P and organic P at the sediment surface and by organic P, authigenic Ca-P and detrital P at depth. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink switching of organic or Fe-oxide-bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1) with rates decreasing seaward from the inner to outer archipelago. Our results explain how sediments in this eutrophic coastal system can remove P through burial at a relatively high rate, regardless of whether the bottom waters are oxic or (frequently) hypoxic. Our results suggest that benthic N processes undergo annual cycles of removal and recycling in response to hypoxic conditions. Further nutrient load reductions are expected to contribute to the recovery of the eutrophic Stockholm archipelago from hypoxia. Based on the dominant pathways of P and N removal identified in this study, it is expected that the sediments will continue to remove part of the P and N loads.

  • Open Access English
    Authors: 
    Seroussi, Hélène; Nowicki, Sophie; Simon, Erika; Abe-Ouchi, Ayako; Albrecht, Torsten; Brondex, Julien; Cornford, Stephen; Dumas, Christophe; Gillet-Chaulet, Fabien; Goelzer, Heiko; +29 more
    Project: EC | ACCLIMATE (339108), EC | NACLIM (308299), NSF | The Management and Operat... (1852977), ANR | TROIS-AS (ANR-15-CE01-0005), NSF | Collaborative Research: E... (1443229)

    Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.

  • Open Access English
    Authors: 
    Heinze, Christoph; Ilyina, Tatiana; Gehlen, Marion;
    Project: EC | EPOCA (211384), EC | CARBOCHANGE (264879)

    Concentrations of dissolved 230Th in the ocean water column increase with depth due to scavenging and downward particle flux. Due to the 230Th scavenging process, any change in the calcium carbonate (CaCO3) fraction of the marine particle flux due to changes in biological CaCO3 hard-shell production as a consequence of progressing ocean acidification would be reflected in the dissolved 230Th activity. Our prognostic simulations with a biogeochemical ocean general circulation model using different scenarios for the reduction of CaCO3 production under ocean acidification and different greenhouse gas emission scenarios – the Representative Concentration Pathways (RCPs) 8.5 to 2.6 – reveal the potential for deep 230Th measurements to detect reduced CaCO3 production at the sea surface. The time of emergence of an acidification-induced signal on dissolved 230Th is of the same order of magnitude as for alkalinity measurements. Interannual and decadal variability in factors other than a reduction in CaCO3 hard-shell production may mask the ocean-acidification-induced signal in dissolved 230Th and make detection of the pure CaCO3-induced signal more difficult so that only really strong changes in marine CaCO3 export would be unambiguously identifiable soon. Nevertheless, the impacts of changes in CaCO3 export production on marine 230Th are stronger than those for changes in POC (particulate organic carbon) or clay fluxes.

  • Open Access English
    Authors: 
    Hasenfratz, Adam P; Jaccard, Samuel L; Martínez‐García, Alfredo; Sigman, Daniel M; Hodell, David A; Vance, Derek; Bernasconi, Stefano M; Kleiven, Helga F; Haumann, F Alexander; Haug, Gerald H;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: SNSF | SeaO2 - Past changes in S... (144811), SNSF | SeaO2 - Past changes in S... (172915), SNSF | Ciliary targeting of PDGF... (141424)

    All data are from core ODP 1094 recovered from the Antarctic Zone of the Southern Ocean (Atlantic sector). Age model of ODP 1094 (1.5Ma) dδ18O, Mg/Ca, Mn/Ca and Mg/Ca-derived sea surface temperature and surface water d18O based on down core measurements of planktic Neogloboquadrina pachyderma (sinistral) from core ODP 1094 (downcore data and averaged for MIS). δ18O, Mg/Ca, Mn/Ca and Mg/Ca-derived bottom water temperature and bottom water d18O based on down core measurements of benthic Melonis pompilioides from core ODP 1094 (downcore data and averaged for MIS). δ18O of benthic Cibicidoides spp. from core ODP 1094.

  • Open Access English
    Authors: 
    Lauvset, Siv Kari; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Antón; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; +7 more
    Project: EC | SEADATANET II (283607), NSF | Support for International... (1243377), NSF | Southern Ocean Carbon and... (1425989), NSF | Collaborative Research: C... (0825163), EC | AtlantOS (633211), EC | CARBOCHANGE (264879)

    We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).

  • Open Access English
    Authors: 
    Olsen, Are; Key, Robert M.; Heuven, Steven; Lauvset, Siv K.; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; +6 more
    Project: NSF | Support for International... (1243377), NSF | Southern Ocean Carbon and... (1425989), NSF | Collaborative Research: C... (0825163), EC | AtlantOS (633211), EC | CARBOCHANGE (264879)

    Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 6 µmol kg−1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.The original data and their documentation and doi codes are available at the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/GLODAPv2/). This site also provides access to the calibrated data product, which is provided as a single global file or four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under the doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2. The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2 methods and products and includes a broad overview of the secondary quality control results. The magnitude of and reasoning behind each adjustment is available on a per-cruise and per-variable basis in the online Adjustment Table.

  • Open Access English
    Authors: 
    Landais, Amaelle; Masson-Delmotte, Valérie; Capron, Emilie; Langebroek, Petra M.; Bakker, Pepijn; Stone, Emma J.; Merz, Niklaus; Raible, Christoph C.; Fischer, Hubertus; Orsi, Anaïs; +3 more
    Project: EC | WATERUNDERTHEICE (246815), ANR | GREENLAND (ANR-10-CEPL-0008), EC | PAST4FUTURE (243908), ANR | NEEM (ANR-07-VULN-0009), EC | COMBINISO (306045)

    The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.

  • Open Access English
    Authors: 
    Friedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; +29 more
    Project: EC | HYPOX (226213)

    In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.