Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
159 Research products, page 1 of 16

  • European Marine Science
  • Other research products
  • FR
  • CH
  • CN

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Waelbroeck, Claire; Tjiputra, Jerry; Guo, Chuncheng; Nisancioglu, Kerim H.; Jansen, Eystein; Vazquez Riveiros, Natalia; Toucanne, Samuel; Eynaud, Frédérique; Rossignol, Linda; Dewilde, Fabien; +3 more
    Project: EC | ACCLIMATE (339108), EC | ICE2ICE (610055)

    We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry, in order to interpret the observed Cibicides δ13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides δ13C observed at the end of HS4 between ~2000 and 4200 m in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high latitude glacial North Atlantic. Our model results show that this Cibicides δ13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from ~40 % at 2000 m to ~80 % at 4000 m. Below ~4200 m, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials than interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.

  • Open Access English
    Authors: 
    Lischka, Silke; Ayón, Patricia; Pinedo Arteaga, Elda Luz; Schukat, Anna; Taucher, Jan; Kiko, Rainer; Hauss, Helena; Dorschner, Sabrina; Hagen, Wilhelm; Segura-Noguera, Mariona;
    Publisher: PANGAEA
    Project: ANR | TAD (ANR-19-MPGA-0012)

    Increasing upwelling intensity and shoaling of the oxygen minimum zone (OMZ) is projected for Eastern Boundary Upwelling Systems (EBUSs) under ocean warming which may have severe consequences for mesopelagic food webs, trophic transfer, and fish production also in the Humboldt Current Upwelling System (HUS). To improve our mechanistic understanding, from February 23, 2017 until April 14, 2017 we performed a 50 days mesocosm experiment in the northern HUS (off Callao Bay, Peru) and monitored the zooplankton development prior to and following a simulated upwelling event through the addition of deeper water of two different OMZ-influenced subsurface waters to four of in total eight mesocosms. To elucidate plankton dynamics and trophic relationships, we followed the temporal development of the mesozooplankton community in relation to that of phytoplankton, analyzed the fatty acid composition and gut fluorescence of dominant copepods, and determined the stable isotope (SI) and elemental composition (C:N) of dominant zooplankton taxa. Zooplankton samples were collected from the mesocosms over the entire experiment duration using an Apstein net (17 cm diameter, 100 µm mesh) to determine abundance and taxonomic composition of the zooplankton community, and to analyze fatty acid composition, gut fluorescence and elemental composition of dominant zooplankton. Furthermore, abundance and biomass of zooplankton groups was estimated from scanned ZooScan images.

  • Open Access English
    Authors: 
    Benedetti, Fabio;
    Publisher: JETZON - investigating the Ocean's Twilight Zone
    Country: Switzerland
    Project: EC | AtlantECO (862923)
  • French
    Authors: 
    Barré , Éric;
    Publisher: HAL CCSD
    Country: France

    n°90

  • Open Access English
    Authors: 
    Clyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; +13 more
    Project: NSF | Decadal Prediction Follow... (1430051), SNSF | SPARC International Proje... (138017), UKRI | The North Atlantic Climat... (NE/N018001/1), EC | STRATOCLIM (603557), UKRI | Reconciling Volcanic Forc... (NE/S000887/1)

    As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.

  • Open Access English
    Authors: 
    Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;
    Project: EC | ICE2ICE (610055)

    This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.

  • Open Access
    Authors: 
    Vogt, Meike; Benedetti, Fabio; Righetti, Damiano; O'Brien, Colleen; Krebs, Luana; Hofmann Elizondo, Urs; Eriksson, Dominic;
    Country: Switzerland
    Project: EC | AtlantECO (862923)
  • Open Access English
    Authors: 
    Kiko, Rainer; Picheral, Marc; Antoine, David; Babin, Marcel; Berline, L; Biard, Tristan; Boss, Emmanuel; Brandt, Peter; Carlotti, F; Christiansen, Svenja; +32 more
    Publisher: PANGAEA
    Project: ANR | TAD (ANR-19-MPGA-0012), EC | TRIATLAS (817578)

    Particle size distribution data was collected during multiple cruises globally with several regularly intercalibrated Underwater Vision Profilers, Version 5 (UVP5; Picheral et al 2010). During the respective cruises, the UVP5 was mounted on the CTD-Rosette or as a standalone instrument and deployed in vertical mode. The UVP5 takes pictures of an illuminated watervolume of about 1 Liter every few milliseconds. Imaged items are counted, their size measured and abundance and biovolume of the particles is calculated. For different size bins, this information is summarized in the columns "Particle concentration" and "Particle biovolume". For further details please refer to Kiko et al. (in prep.) "A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5".

  • Open Access
    Authors: 
    GASPERI, Johnny; TRAMOY, Romain; DRIS, Rachid; BLOT, Denis; TASSIN, Bruno;
    Country: France

    Les rivières sont censées être les principales voies de transfert des plastiques des terres vers l'océan (Lebreton et al., 2017 ; Schmidt et al., 2017). Cependant, il existe encore un manque important de connaissances sur la façon dont les déchets fluviaux, y compris les macroplastiques, sont transférés vers l'Océan. Les mesures quantitatives des émissions de macroplastiques dans les rivières suggèrent même qu'une fraction de l'ordre de 0,001 à 3% des déchets plastiques mal gérés (MPW) générés dans un bassin fluvial atteignent finalement la mer (Emmerik et al., 2019 ; Schöneich-Argent et al., 2020 ; Tramoy et al. 2021). Au lieu de cela, les macroplastiques peuvent rester dans le bassin versant et sur les côtes en raison de la dynamique complexe du transport qui retarde le transfert des déchets mal gérés des terres vers l'océan (Olivelli et al., 2020 ; Weideman et al., 2020). Afin de mieux comprendre ces dynamiques, le laboratoire Eau et Environnement et le Laboratoire Eau Environnement et Systèmes Urbains étudient la dynamique des déchets en Seine et en Loire. Pour les macrodéchets plastiques, l'ensemble des travaux engagés sur la Seine permettent de dresser une première esquisse des flux de déchets plastiques transitant en Seine, captés par les dispositifs urbains et/ou collectés par des opérations de nettoyage. Selon nos estimations, entre 100 et 200 tonnes de déchets plastiques transiteraient chaque année en Seine. A l'échelle de l'agglomération parisienne, et bien que ces valeurs s'accompagnent de fortes incertitudes, les eaux pluviales n'apporteraient qu'une part mineure de ces flux, i.e., entre 8 et 33 tonnes par an. L'étude de la dynamique des débris plastiques montre que le transfert des plastiques est loin d'être linéaire et qu'il est soumis à de nombreux phénomènes physiques à de nombreuses échelles temporelles, i.e. d'échelles courtes allant de quelques heures à quelques jours (marées hautes / basses) à des échelles beaucoup plus longues allant de plusieurs semaines (marées de printemps / creuses et marées les plus hautes) à quelques années (crues). La conséquence de ces interactions est que le transfert des débris est chaotique et qu'une part importante de ces flux peut venir s'échouer sur les berges.

  • Open Access English
    Authors: 
    TRAMOY, Romain; GASPERI, Johnny; COLASSE, Laurent; SILVESTRE, Marie; DUBOIS, Philippe; TASSIN, Bruno;
    Country: France

    Rivers are major pathways of plastics from lands into the Ocean. However, there is still a huge lack of knowledge on how riverine litter, including macroplastics, is transferred into the Ocean. Quantitative measurements of macroplastic emissions in rivers even suggest that a small fraction (0.001 to 3%) of the Mismanaged Plastic Waste (MPW) generated within a river basin finally reach the sea. Instead, macroplastics may remain within the catchment and on coastlines because of complex transport dynamics that delay the transfer of plastic debris. In order to better understand those dynamics, we performed tracking of riverine litter over time. First, hundreds of date-prints items were collected on riverbanks in the Seine estuary. The distribution of their Use-By-Dates suggest that riverine litter may remain stored on riverbanks for decades. Second, we performed real time tracking of floating and sub-floating bottles using GPS-trackers. Between March 2018 and April 2019, 39 trajectories were recorded in the estuary under tidal influence and 11 trajectories upriver, covering a wide range of hydrometeorological conditions. Results show a succession of stranding/remobilization episodes in combination with alternating upstream and downstream transport in the estuary related to tides. In the end, tracked bottles systematically stranded somewhere, for hours to weeks, from one to several times on different sites. The overall picture shows that different hydrometeorological phenomena interact with various time scales ranging from hours/days (high/low tides) to weeks/months (spring/neap tides and highest tides) and years (seasonal river flow, vegetation and geomorphological aspects). Thus, the fate of plastic debris is highly unpredictable with a chaotic-like transfer of plastic debris into the Ocean. The residence time of these debris is much longer than the transit time of water. This offers the opportunity to collect them before they get fragmented and/or reach the Sea.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
159 Research products, page 1 of 16
  • Open Access English
    Authors: 
    Waelbroeck, Claire; Tjiputra, Jerry; Guo, Chuncheng; Nisancioglu, Kerim H.; Jansen, Eystein; Vazquez Riveiros, Natalia; Toucanne, Samuel; Eynaud, Frédérique; Rossignol, Linda; Dewilde, Fabien; +3 more
    Project: EC | ACCLIMATE (339108), EC | ICE2ICE (610055)

    We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry, in order to interpret the observed Cibicides δ13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides δ13C observed at the end of HS4 between ~2000 and 4200 m in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high latitude glacial North Atlantic. Our model results show that this Cibicides δ13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from ~40 % at 2000 m to ~80 % at 4000 m. Below ~4200 m, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials than interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.

  • Open Access English
    Authors: 
    Lischka, Silke; Ayón, Patricia; Pinedo Arteaga, Elda Luz; Schukat, Anna; Taucher, Jan; Kiko, Rainer; Hauss, Helena; Dorschner, Sabrina; Hagen, Wilhelm; Segura-Noguera, Mariona;
    Publisher: PANGAEA
    Project: ANR | TAD (ANR-19-MPGA-0012)

    Increasing upwelling intensity and shoaling of the oxygen minimum zone (OMZ) is projected for Eastern Boundary Upwelling Systems (EBUSs) under ocean warming which may have severe consequences for mesopelagic food webs, trophic transfer, and fish production also in the Humboldt Current Upwelling System (HUS). To improve our mechanistic understanding, from February 23, 2017 until April 14, 2017 we performed a 50 days mesocosm experiment in the northern HUS (off Callao Bay, Peru) and monitored the zooplankton development prior to and following a simulated upwelling event through the addition of deeper water of two different OMZ-influenced subsurface waters to four of in total eight mesocosms. To elucidate plankton dynamics and trophic relationships, we followed the temporal development of the mesozooplankton community in relation to that of phytoplankton, analyzed the fatty acid composition and gut fluorescence of dominant copepods, and determined the stable isotope (SI) and elemental composition (C:N) of dominant zooplankton taxa. Zooplankton samples were collected from the mesocosms over the entire experiment duration using an Apstein net (17 cm diameter, 100 µm mesh) to determine abundance and taxonomic composition of the zooplankton community, and to analyze fatty acid composition, gut fluorescence and elemental composition of dominant zooplankton. Furthermore, abundance and biomass of zooplankton groups was estimated from scanned ZooScan images.

  • Open Access English
    Authors: 
    Benedetti, Fabio;
    Publisher: JETZON - investigating the Ocean's Twilight Zone
    Country: Switzerland
    Project: EC | AtlantECO (862923)
  • French
    Authors: 
    Barré , Éric;
    Publisher: HAL CCSD
    Country: France

    n°90

  • Open Access English
    Authors: 
    Clyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; +13 more
    Project: NSF | Decadal Prediction Follow... (1430051), SNSF | SPARC International Proje... (138017), UKRI | The North Atlantic Climat... (NE/N018001/1), EC | STRATOCLIM (603557), UKRI | Reconciling Volcanic Forc... (NE/S000887/1)

    As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.

  • Open Access English
    Authors: 
    Plach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;
    Project: EC | ICE2ICE (610055)

    This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.

  • Open Access
    Authors: 
    Vogt, Meike; Benedetti, Fabio; Righetti, Damiano; O'Brien, Colleen; Krebs, Luana; Hofmann Elizondo, Urs; Eriksson, Dominic;
    Country: Switzerland
    Project: EC | AtlantECO (862923)
  • Open Access English
    Authors: 
    Kiko, Rainer; Picheral, Marc; Antoine, David; Babin, Marcel; Berline, L; Biard, Tristan; Boss, Emmanuel; Brandt, Peter; Carlotti, F; Christiansen, Svenja; +32 more
    Publisher: PANGAEA
    Project: ANR | TAD (ANR-19-MPGA-0012), EC | TRIATLAS (817578)

    Particle size distribution data was collected during multiple cruises globally with several regularly intercalibrated Underwater Vision Profilers, Version 5 (UVP5; Picheral et al 2010). During the respective cruises, the UVP5 was mounted on the CTD-Rosette or as a standalone instrument and deployed in vertical mode. The UVP5 takes pictures of an illuminated watervolume of about 1 Liter every few milliseconds. Imaged items are counted, their size measured and abundance and biovolume of the particles is calculated. For different size bins, this information is summarized in the columns "Particle concentration" and "Particle biovolume". For further details please refer to Kiko et al. (in prep.) "A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5".

  • Open Access
    Authors: 
    GASPERI, Johnny; TRAMOY, Romain; DRIS, Rachid; BLOT, Denis; TASSIN, Bruno;
    Country: France

    Les rivières sont censées être les principales voies de transfert des plastiques des terres vers l'océan (Lebreton et al., 2017 ; Schmidt et al., 2017). Cependant, il existe encore un manque important de connaissances sur la façon dont les déchets fluviaux, y compris les macroplastiques, sont transférés vers l'Océan. Les mesures quantitatives des émissions de macroplastiques dans les rivières suggèrent même qu'une fraction de l'ordre de 0,001 à 3% des déchets plastiques mal gérés (MPW) générés dans un bassin fluvial atteignent finalement la mer (Emmerik et al., 2019 ; Schöneich-Argent et al., 2020 ; Tramoy et al. 2021). Au lieu de cela, les macroplastiques peuvent rester dans le bassin versant et sur les côtes en raison de la dynamique complexe du transport qui retarde le transfert des déchets mal gérés des terres vers l'océan (Olivelli et al., 2020 ; Weideman et al., 2020). Afin de mieux comprendre ces dynamiques, le laboratoire Eau et Environnement et le Laboratoire Eau Environnement et Systèmes Urbains étudient la dynamique des déchets en Seine et en Loire. Pour les macrodéchets plastiques, l'ensemble des travaux engagés sur la Seine permettent de dresser une première esquisse des flux de déchets plastiques transitant en Seine, captés par les dispositifs urbains et/ou collectés par des opérations de nettoyage. Selon nos estimations, entre 100 et 200 tonnes de déchets plastiques transiteraient chaque année en Seine. A l'échelle de l'agglomération parisienne, et bien que ces valeurs s'accompagnent de fortes incertitudes, les eaux pluviales n'apporteraient qu'une part mineure de ces flux, i.e., entre 8 et 33 tonnes par an. L'étude de la dynamique des débris plastiques montre que le transfert des plastiques est loin d'être linéaire et qu'il est soumis à de nombreux phénomènes physiques à de nombreuses échelles temporelles, i.e. d'échelles courtes allant de quelques heures à quelques jours (marées hautes / basses) à des échelles beaucoup plus longues allant de plusieurs semaines (marées de printemps / creuses et marées les plus hautes) à quelques années (crues). La conséquence de ces interactions est que le transfert des débris est chaotique et qu'une part importante de ces flux peut venir s'échouer sur les berges.

  • Open Access English
    Authors: 
    TRAMOY, Romain; GASPERI, Johnny; COLASSE, Laurent; SILVESTRE, Marie; DUBOIS, Philippe; TASSIN, Bruno;
    Country: France

    Rivers are major pathways of plastics from lands into the Ocean. However, there is still a huge lack of knowledge on how riverine litter, including macroplastics, is transferred into the Ocean. Quantitative measurements of macroplastic emissions in rivers even suggest that a small fraction (0.001 to 3%) of the Mismanaged Plastic Waste (MPW) generated within a river basin finally reach the sea. Instead, macroplastics may remain within the catchment and on coastlines because of complex transport dynamics that delay the transfer of plastic debris. In order to better understand those dynamics, we performed tracking of riverine litter over time. First, hundreds of date-prints items were collected on riverbanks in the Seine estuary. The distribution of their Use-By-Dates suggest that riverine litter may remain stored on riverbanks for decades. Second, we performed real time tracking of floating and sub-floating bottles using GPS-trackers. Between March 2018 and April 2019, 39 trajectories were recorded in the estuary under tidal influence and 11 trajectories upriver, covering a wide range of hydrometeorological conditions. Results show a succession of stranding/remobilization episodes in combination with alternating upstream and downstream transport in the estuary related to tides. In the end, tracked bottles systematically stranded somewhere, for hours to weeks, from one to several times on different sites. The overall picture shows that different hydrometeorological phenomena interact with various time scales ranging from hours/days (high/low tides) to weeks/months (spring/neap tides and highest tides) and years (seasonal river flow, vegetation and geomorphological aspects). Thus, the fate of plastic debris is highly unpredictable with a chaotic-like transfer of plastic debris into the Ocean. The residence time of these debris is much longer than the transit time of water. This offers the opportunity to collect them before they get fragmented and/or reach the Sea.