Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Research products, page 1 of 1

  • European Marine Science
  • Other research products
  • 2018-2022
  • BE
  • SK
  • Biogeosciences (BG)

Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Geerlings, Nicole M. J.; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Middelburg, Jack J.; Meysman, Filip J. R.;
    Project: EC | BIPHA (660481), NWO | The impact of cable bacte... (2300189430), EC | SEDBIOGEOCHEM2.0 (306933)

    Cable bacteria are multicellular, filamentous microorganisms that are capable of transporting electrons over centimeter-scale distances. Although recently discovered, these bacteria appear to be widely present in the seafloor, and when active they exert a strong imprint on the local geochemistry. In particular, their electrogenic metabolism induces unusually strong pH excursions in aquatic sediments, which induces considerable mineral dissolution, and subsequent mineral reprecipitation. However, at present, it is unknown whether and how cable bacteria play an active or direct role in the mineral reprecipitation process. To this end we present an explorative study of the formation of sedimentary minerals in and near filamentous cable bacteria using a combined approach of electron microscopy and spectroscopic techniques. Our observations reveal the formation of polyphosphate granules within the cells and two different types of biomineral formation directly associated with multicellular filaments of these cable bacteria: (i) the attachment and incorporation of clay particles in a coating surrounding the bacteria and (ii) encrustation of the cell envelope by iron minerals. These findings suggest a complex interaction between cable bacteria and the surrounding sediment matrix, and a substantial imprint of the electrogenic metabolism on mineral diagenesis and sedimentary biogeochemical cycling. In particular, the encrustation process leaves many open questions for further research. For example, we hypothesize that the complete encrustation of filaments might create a diffusion barrier and negatively impact the metabolism of the cable bacteria.

  • Open Access English
    Authors: 
    Stratmann, Tanja; Lins, Lidia; Purser, Autun; Marcon, Yann; Rodrigues, Clara F.; Ravara, Ascensão; Cunha, Marina R.; Simon-Lledó, Erik; Jones, Daniel O. B.; Sweetman, Andrew K.; +2 more
    Project: EC | MIDAS (603418), NWO | Structure and (mal)functi... (2300191283), FCT | SFRH/BPD/107805/2015 (SFRH/BPD/107805/2015)

    Future deep-sea mining for polymetallic nodules in abyssal plains will negatively impact the benthic ecosystem, but it is largely unclear whether this ecosystem will be able to recover from mining disturbance and if so, to what extent and at what timescale. During the “DISturbance and reCOLonization” (DISCOL) experiment, a total of 22 % of the seafloor within a 10.8 km2 circular area of the nodule-rich seafloor in the Peru Basin (SE Pacific) was ploughed in 1989 to bury nodules and mix the surface sediment. This area was revisited 0.1, 0.5, 3, 7, and 26 years after the disturbance to assess macrofauna, invertebrate megafauna and fish density and diversity. We used this unique abyssal faunal time series to develop carbon-based food web models for each point in the time series using the linear inverse modeling approach for sediments subjected to two disturbance levels: (1) outside the plough tracks; not directly disturbed by plough, but probably suffered from additional sedimentation; and (2) inside the plough tracks. Total faunal carbon stock was always higher outside plough tracks compared with inside plough tracks. After 26 years, the carbon stock inside the plough tracks was 54 % of the carbon stock outside plough tracks. Deposit feeders were least affected by the disturbance, with modeled respiration, external predation, and excretion rates being reduced by only 2.6 % inside plough tracks compared with outside plough tracks after 26 years. In contrast, the respiration rate of filter and suspension feeders was 79.5 % lower in the plough tracks after 26 years. The “total system throughput” (T..), i.e., the total sum of modeled carbon flows in the food web, was higher throughout the time series outside plough tracks compared with the corresponding inside plough tracks area and was lowest inside plough tracks directly after the disturbance (8.63 × 10−3 ± 1.58 × 10−5 mmol C m−2 d−1). Even 26 years after the DISCOL disturbance, the discrepancy of T.. between outside and inside plough tracks was still 56 %. Hence, C cycling within the faunal compartments of an abyssal plain ecosystem remains reduced 26 years after physical disturbance, and a longer period is required for the system to recover from such a small-scale sediment disturbance experiment.

  • Open Access English
    Authors: 
    Capet, A.; Beckers, J.-M.; Grégoire, M.;
    Project: EC | HYPOX (226213)

    The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical–biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981–2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981–2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS – which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers – and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability of H is explained by the combination of four predictors: the annual riverine nitrate load (N), the sea surface temperature in the month preceding stratification (Ts), the amount of semi-labile organic matter accumulated in the sediments (C) and the sea surface temperature during late summer (Tf). Partial regression indicates that the climatic impact on hypoxia is almost as important as that of eutrophication. Accumulation of organic matter in the sediments introduces an important inertia in the recovery process after eutrophication, with a typical timescale of 9.3 yr. Seasonal fluctuations and the heterogeneous spatial distribution complicate the monitoring of bottom hypoxia, leading to contradictory conclusions when the interpretation is done from different sets of data. In particular, it appears that the recovery reported in the literature after 1995 was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urgent need for a dedicated monitoring effort in the Black Sea NWS focused on the areas and months concerned by recurrent hypoxic events.

  • Open Access English
    Authors: 
    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.;
    Project: EC | SEDBIOGEOCHEM2.0 (306933), EC | PHOXY (278364)

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light–dark incubations, in addition to sediment–water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air–sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment–water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid–base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid–base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  • Open Access English
    Authors: 
    Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.;
    Project: EC | SEDBIOGEOCHEM2.0 (306933)

    Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.

  • Open Access English
    Authors: 
    Ingels, J.; Vanreusel, A.;
    Project: EC | HERMIONE (226354)

    The urge to understand spatial distributions of species and communities and their causative processes has continuously instigated the development and testing of conceptual models in spatial ecology. For the deep sea, there is evidence that structural and functional characteristics of benthic communities are regulated by a multitude of biotic and environmental processes that act in concert on different spatial scales, but the spatial patterns are poorly understood compared to those for terrestrial ecosystems. Deep-sea studies generally focus on very limited scale ranges, thereby impairing our understanding of which spatial scales and associated processes are most important in driving structural and functional diversity of communities. Here, we used an extensive integrated dataset of free-living nematodes from deep-sea sediments to unravel the importance of different spatial scales in determining benthic infauna communities. Multiple-factor multivariate permutational analyses were performed on different sets of community descriptors (structure, structural and functional diversity, standing stock). The different spatial scales investigated cover two margins in the northeast Atlantic, several submarine canyons/channel/slope areas, a bathymetrical range of 700–4300 m, different sampling locations at each station, and vertical sediment profiles. The results indicated that the most important spatial scale for structural and functional diversity and standing stock variability is the smallest one; infauna communities changed substantially more with differences between sediment depth layers than with differences associated to larger geographical or bathymetrical scales. Community structure differences were greatest between stations at both margins. Important regulating ecosystem processes and the scale on which they occur are discussed. The results imply that, if we are to improve our understanding of ecosystem patterns of deep-sea infauna and the relevant processes driving their structure, structural and functional diversity, and standing stock, we must pay particular attention to the small-scale heterogeneity or patchiness and the causative mechanisms acting on that scale.

  • Open Access English
    Authors: 
    Egger Matthias; Kraal Peter; Jilbert Tom; Sulu-Gambari Fatimah; Sapart Célia-Julia; Röckmann Thomas; Slomp Caroline P;
    Project: EC | PHOXY (278364), NWO | Iron mineral transformati... (2300186468), NWO | Response of the Iron Biog... (2300182111)

    The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe)-oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ.Here we combine detailed geochemical analyses of the sediment and porewater with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P), and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. In line with previous studies in the Black Sea, we show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g., vivianite) are converted to sulfide phases, leading to an enrichment in solid-phase S and the release of phosphate to the porewater. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward-diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front.Our model results further demonstrate that downward-migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM ( ∼ 1–100 pmol cm−3 d−1) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction and reactivation of less reactive Fe oxides by methanogens, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the porewater at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate, and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.

  • Open Access English
    Authors: 
    Bettencourt, R.; Rodrigues, M. I.; Barros, I.; Cerqueira, T.; Freitas, C.; Costa, V.; Pinheiro, M.; Egas, C.; Santos, R. S.;
    Project: FCT | PEst-OE/EEI/LA0009/2011 (PEst-OE/EEI/LA0009/2011), EC | HERMIONE (226354), FCT | PTDC/MAR/65991/2006 (PTDC/MAR/65991/2006)

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus is a symbiont bearing bivalve that is found in great abundance at the Menez Gwen and Lucky Strike vent sites and in close vicinity off the Azores region near the Mid-Atlantic Ridge (MAR). The distinct relationships that vent mussels have developed with their physical and chemical environments are likely reflected in global gene expression profiles providing thus a means to distinguish geographically distinct vent mussels on the basis of gene expression studies, fluorescence in situ hybridization (FISH) experiments and 16S rRNA amplicon sequencing, to assess the natural expression of bacterial genes and vent mussel immune genes and the constitutive distribution and relative abundance of endosymbiotic bacteria within gill tissues. Our results confirmed the presence of methanotroph-related endosymbionts in Menez Gwen vent mussels whereas Lucky Strike specimens seem to harbor a different bacterial morphotype when a methane monooxygenase gene specific probe was used. No qualitative differences could be visualized between Menez Gwen and Lucky Strike individuals when tested with sulfur-oxidizing-related nucleic-acid probe. Quantitative PCR (qPCR) studies revealed varied gene expression profiles in both Menez Gwen and Lucky Strike mussel gill tissues for the immune genes selected. Genes encoding transcription factors presented noticeably low levels of fold expression whether in MG or LS animals whereas the genes encoding effector molecules appeared to have higher levels expression in MG gill tissues. The peptidoglycan recognition molecule, encoding gene, PGRP presented the highest level of transcriptional activity among the genes analyzed in MG gill tissues, seconded by carcinolectin and thus denoting the relevance of immune recognition molecules in early stage of the immune responses onset. Genes regarded as encoding molecules involved in signaling pathways were consistently expressed in both MG and LS gill tissues. Remarkably, the immunity-related GTPase encoding gene demonstrated in LS samples, the highest level of expression among the signaling molecule encoding genes tested when expressions levels were compared between MG and LG animals. A differential expression analysis of bacterial genes between MG and LS indicated a clear expression signature in LS gill tissues. The bacterial community structure ensued from the 16S rRNA sequencing analyses pointed at a unpredicted conservation of endosymbiont bacterial loads between MG and LS samples. Taken together, our results support the premise that Bathymodiolus azoricus exhibits different transcriptional statuses depending on which hydrothermal vent site it is collected from and within the same collection site while exhibiting differential levels of expression of genes corresponding to different immune functional categories. The present study represents a first attempt to characterize gene expression signatures in hydrothermal vent animals issued from distinct deep-sea environmental sites based on immune and bacterial genes expressions.