Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.

  • European Marine Science
  • Other research products
  • EU
  • US
  • FR
  • DE
  • English

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oboh, Eugene;

    The Biofilm grazer model is an agent based model (ABM) built upon the MESA ABM framework ( https://mesa.readthedocs.io/en/stable/ ). The model helps us understand the effects of nutrient, light and grazing on the spatio-temporal development of rivernine biofilm. Instructions from the README.md will help you set up the environment and run the model.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Model . 2024
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Model . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Model . 2024
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Model . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Buttigieg, Pier Luigi; Christoffersen, Shannon; Ingram, Rebekah; Manley, William; +11 Authors

    In this letter, we introduce The Polar Vocabularies and Semantics Working Group, originally established as a joint effort between the joint SAON/IASC Arctic Data Committee and the Data Management Collaboration Team of the Interagency Arctic Research Policy Committee. We Invite, communities of practice to actively engage with us in our activities (described below), to advance the state of semantics-based applications in polar activities (and to increase interoperability between stakeholders and rights holders within existing and emerging digital ecosystems).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2024
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Other ORP type . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2024
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Other ORP type . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ricour, Florian; Guidi, Lionel; Gehlen, Marion; DeVries, Timothy; +1 Authors
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Martínez Moreno, Josué;

    This dataset includes the NEMO 4.0.2 configuration used and analysed in the paper titled "Eddy-driven heterogeneity in sea ice during the ice-growth season". The output data is approximately 4TB for the 3 idealised configuration used in the manuscript, thus we opted to distribute the configuration. Note: The initial conditions for each simulation are compressed into the file `init_cond.zip` The configuration for one of the simulations is compressed in the file `config.zip` In order to reproduce all the runs, it's only required to change the initial conditions in the file namelist_cfg and namelist_ice_cfg. Further information and scripts to reproduce the result of the manuscript can be found at: https://github.com/josuemtzmo/Ice_formation

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Banerjee, Tridib; Danilov, Sergey; Scholz, Patrick; Klingbeil, Knut; +1 Authors

    FESOM2.5 code with preliminary implementation of the Split-Explicit external mode solver. This project is a contribution to the projects M5 (Reducing spurious mixing and energetic inconsistencies in realistic ocean modelling applications) and S2 (Improved parameterisations and numerics in climate models) of the Collaborative Research Centre TRR 181 "Energy Transfer in Atmosphere and Ocean" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 274762653.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Vogt, Meike; Benedetti, Fabio; Sarmento, Hugo; Huber, Paula; +23 Authors
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pagano, Pasquale; Pittonet, Sara; Drago, Federico; Giuffrida, Maria;

    There are several research infrastructures or other data services running in Europe that cover a multitude of marine-related sciences, providing specific datasets coming from observations collected with different methods. These infrastructures constitute a diverse world, each looking at a piece of the big picture, sometimes hindering collaboration and data sharing. Blue-Cloud aims to overcome fragmentation and build a bridge between thematic science clusters - such as marine, climate, food and agriculture sciences - and EOSC, creating a data federation and providing a common access to a so-called thematic EOSC for marine data. By connecting leading marine data management infrastructures with horizontal e-infrastructures, the project aims to maximise the exploitation of data resources available from different sources. The Blue-Cloud framework consists of two major technical components: (1) a Blue-Cloud Data Discovery and Access service, already presented in a previous EOSC in practice story, to serve federated discovery and access to blue data infrastructures, and (2) a Blue-Cloud Virtual Research Environment (VRE) to provide computing platforms and analytical services facilitating the collaboration between researchers, which is detailed hereafter. The Blue-Cloud VRE is powered by the D4Science Infrastructure. [M. Assante et al. (2019) Enacting open science by D4Science. Future Gener. Comput. Syst. 101: 555-563 10.1016/j.future.2019.05.063 ] The full list of EOSC in practice stories is available here

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2023
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2023
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Roberty, Stéphane; Vega de Luna, Felix; Pierangelini, Mattia; Bomhals, Julie; +3 Authors

    Acclimation of corals to light is known to rely on multiple strategies working at different timescales. Among them, photosynthetic alternative electron flows (AEFs) could act as photoprotective mechanisms under fluctuating light intensities. In this work, we first compared the use of AEFs in shallow and mesophotic colonies of the coral Stylophora pistillata by carrying out joint measurements of oxygen exchange and photosystems quantum yields. We observed similar capacities to re-route photosynthetically derived electrons toward oxygen (Mehler reaction) and to perform cyclic electron flow around photosystem I under high light intensity in both colony types. But in contrast to mesophotic colonies that hosted Cladocopium, the photosynthetic apparatus of Symbiodinium microadriaticum hosted by their shallow counterparts was notably able to drive a higher number of electrons, displayed a higher thermal dissipation of absorbed light energy. Then, a short-term light stress was applied to evaluate the plasticity of the photosynthetic apparatus. Both shallow and mesophotic colonies showed fast acclimation to the low light regime. In contrast, under the high light regime, mesophotic colonies showed a limited capacity to dissipate light energy and were strongly photoinhibited, though their PSI activity was partly preserved and likely involved cyclic electron flow. This study shows how important the photosynthetic alternative electron flows are in acclimation processes to light and how the plasticity of the photosynthetic processes in Symbiodiniaceae may shape the vertical distribution of the coral holobionts.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sarradin, Pierre-Marie; Matabos, Marjolaine; Gautier, Laurent;

    Momarsat 2022 cruise report: summary of dives and operations, and position of moorings and observation infrastructures and sampling locations

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5281/zenodo...
    Other ORP type . 2023
    License: CC BY
    Data sources: Sygma
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5281/zenodo...
      Other ORP type . 2023
      License: CC BY
      Data sources: Sygma
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Love, Connor;

    The creation, movement, and consumption of distinct biomolecules by marine organisms has far reaching implications regarding ecosystem material and energy flow and how we manage the marine environment. Lipids are ubiquitous, energy rich biomolecules that are essential for all life and are used for cell membrane structure, energy storage and serve as useful indicators for ecosystem and food web dynamics. In this dissertation, the flow of specific lipid biomolecules through multiple marine environments is measured, explored, and clarified to better understand biogeochemical cycles, marine food webs and ecosystem connectivity. In the first chapter of my dissertation, I measure, quantify, and close the loop of the open ocean microbial hydrocarbon cycle, with implications for priming effects of the ocean microbiome to oil spills. It is estimated that seeps, spills, and other oil pollution introduce ~ 1.3 million tons (1.3 Tg) of hydrocarbons into the ocean each year. Additionally, it is known that globally abundant marine cyanobacteria Prochlorococcus and Synechococcus which account for ~25% of ocean net primary production also produce hydrocarbons from fatty acids. But little is known about the size, turnover and fate of these cyanobacterial hydrocarbons and the implications for the ocean’s microbiome response to future oil spills. From a research expedition in the North Atlantic, I report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane which correlates tightly with fluorescence and Prochlorococcus abundance in oligotrophic waters. Using chemical and isotopic tracing I find that pentadecane production and diel dynamics mainly occurs in the lower euphotic zone at the deep chlorophyll maximum. I estimate the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100 to 500-fold, with cyanobacteria producing ~ 130-650 million tons of pentadecane per year. Analysis of sinking particles at the base of the euphotic zone show that nearly all pentadecane (< 0.001 % remaining) is consumed within the euphotic zone, suggesting near complete consumption of these hydrocarbons by hydrocarbon degrading microbes. These findings characterize a wide-spread microbial hydrocarbon cycle that selectively primes the ocean’s microbiome with long-chain alkanes. In the second chapter of my dissertation, I conduct a large-scale feeding experiment on a symbiotic reef-building coral (Stylophora pistillata) in the Red Sea to clarify fatty acid and isotopic biomarker patterns of coral heterotrophy for use in the field. Coral heterotrophy is an often-overlooked facet of coral nutrition that provides essential nutrients that help corals resist and recover from thermally induced bleaching that is degrading reef ecosystems around the world due to rising global ocean temperatures. Yet, methods for measuring coral mixotrophy, the balance between organic matter contributions to the coral host from autotrophic photo endosymbionts and heterotrophy on particles and plankton have typically been too coarse to elucidate source contributions. Through my experiment I show that fatty acids and isotopic biomarkers reliably separate experimental and reef nutritional source groups (heterotrophic or autotrophic). I show that heterotrophic fatty acid biomarkers are reliably recorded into coral host and symbiont tissues, with a divergent metabolic pattern of autotrophic biomarkers as feeding increases due to positive feedback of heterotrophy on the in hospite photo symbiont population. Additionally, I show that nitrogen and essential fatty acids are preferentially recorded into coral tissue while most heterotrophic carbon is respired or exuded as mucous; this shows that the use of bulk carbon isotopes as a feeding proxy for the last ~ 40 years is largely underestimating the contribution of heterotrophy to the trophic ecology of reef building corals. Overall, this finding underscores a connectivity between oceanic phyto- and zooplankton and reef-building coral. In the third chapter of my dissertation, I explore the mixotrophic differences of divergent bleaching responses of Acropora hyacinthus colonies on the forereef of Mo’orea during the 2019 mass bleaching event. During this bleaching event, all colonies of A. hyacinthus on the deep forereef (14 m) bleached and recovered, while colonies on the shallow forereef (5 m) near the reef crest resisted bleaching entirely, despite the same temperature stress. Using fatty acid and isotopic biomarkers I show through several lines of evidence that bleaching resistant colonies near the reef crest were likely consuming more particulate organic matter than deep forereef colonies. This conclusion is supported by isotopic feeding proxies, less isotopic niche overlap of the host and symbiont of resistant colonies, and larger proportions of putative POM fatty acid biomarkers in the host of resistant colonies relative to recovered colonies. This interpretation is in line with observations that benthic communities on the reef crest are a net sink of oceanic POM and that increased reliance on heterotrophy is associated with bleaching resistance. These data show the vital importance of reef environment, coral heterotrophy, and planktonic subsidies in structuring bleaching response of corals in a warming ocean and ultimately show that the reef crest may serve as a potent zone for reseeding coral populations after marine heat waves.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oboh, Eugene;

    The Biofilm grazer model is an agent based model (ABM) built upon the MESA ABM framework ( https://mesa.readthedocs.io/en/stable/ ). The model helps us understand the effects of nutrient, light and grazing on the spatio-temporal development of rivernine biofilm. Instructions from the README.md will help you set up the environment and run the model.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Model . 2024
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Model . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Model . 2024
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Model . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Buttigieg, Pier Luigi; Christoffersen, Shannon; Ingram, Rebekah; Manley, William; +11 Authors

    In this letter, we introduce The Polar Vocabularies and Semantics Working Group, originally established as a joint effort between the joint SAON/IASC Arctic Data Committee and the Data Management Collaboration Team of the Interagency Arctic Research Policy Committee. We Invite, communities of practice to actively engage with us in our activities (described below), to advance the state of semantics-based applications in polar activities (and to increase interoperability between stakeholders and rights holders within existing and emerging digital ecosystems).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2024
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Other ORP type . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2024
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Other ORP type . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ricour, Florian; Guidi, Lionel; Gehlen, Marion; DeVries, Timothy; +1 Authors
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Martínez Moreno, Josué;

    This dataset includes the NEMO 4.0.2 configuration used and analysed in the paper titled "Eddy-driven heterogeneity in sea ice during the ice-growth season". The output data is approximately 4TB for the 3 idealised configuration used in the manuscript, thus we opted to distribute the configuration. Note: The initial conditions for each simulation are compressed into the file `init_cond.zip` The configuration for one of the simulations is compressed in the file `config.zip` In order to reproduce all the runs, it's only required to change the initial conditions in the file namelist_cfg and namelist_ice_cfg. Further information and scripts to reproduce the result of the manuscript can be found at: https://github.com/josuemtzmo/Ice_formation

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Banerjee, Tridib; Danilov, Sergey; Scholz, Patrick; Klingbeil, Knut; +1 Authors

    FESOM2.5 code with preliminary implementation of the Split-Explicit external mode solver. This project is a contribution to the projects M5 (Reducing spurious mixing and energetic inconsistencies in realistic ocean modelling applications) and S2 (Improved parameterisations and numerics in climate models) of the Collaborative Research Centre TRR 181 "Energy Transfer in Atmosphere and Ocean" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 274762653.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: ZENODO
    ZENODO
    Model . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: ZENODO
      ZENODO
      Model . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Vogt, Meike; Benedetti, Fabio; Sarmento, Hugo; Huber, Paula; +23 Authors
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pagano, Pasquale; Pittonet, Sara; Drago, Federico; Giuffrida, Maria;

    There are several research infrastructures or other data services running in Europe that cover a multitude of marine-related sciences, providing specific datasets coming from observations collected with different methods. These infrastructures constitute a diverse world, each looking at a piece of the big picture, sometimes hindering collaboration and data sharing. Blue-Cloud aims to overcome fragmentation and build a bridge between thematic science clusters - such as marine, climate, food and agriculture sciences - and EOSC, creating a data federation and providing a common access to a so-called thematic EOSC for marine data. By connecting leading marine data management infrastructures with horizontal e-infrastructures, the project aims to maximise the exploitation of data resources available from different sources. The Blue-Cloud framework consists of two major technical components: (1) a Blue-Cloud Data Discovery and Access service, already presented in a previous EOSC in practice story, to serve federated discovery and access to blue data infrastructures, and (2) a Blue-Cloud Virtual Research Environment (VRE) to provide computing platforms and analytical services facilitating the collaboration between researchers, which is detailed hereafter. The Blue-Cloud VRE is powered by the D4Science Infrastructure. [M. Assante et al. (2019) Enacting open science by D4Science. Future Gener. Comput. Syst. 101: 555-563 10.1016/j.future.2019.05.063 ] The full list of EOSC in practice stories is available here

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other ORP type . 2023
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other ORP type . 2023
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Roberty, Stéphane; Vega de Luna, Felix; Pierangelini, Mattia; Bomhals, Julie; +3 Authors

    Acclimation of corals to light is known to rely on multiple strategies working at different timescales. Among them, photosynthetic alternative electron flows (AEFs) could act as photoprotective mechanisms under fluctuating light intensities. In this work, we first compared the use of AEFs in shallow and mesophotic colonies of the coral Stylophora pistillata by carrying out joint measurements of oxygen exchange and photosystems quantum yields. We observed similar capacities to re-route photosynthetically derived electrons toward oxygen (Mehler reaction) and to perform cyclic electron flow around photosystem I under high light intensity in both colony types. But in contrast to mesophotic colonies that hosted Cladocopium, the photosynthetic apparatus of Symbiodinium microadriaticum hosted by their shallow counterparts was notably able to drive a higher number of electrons, displayed a higher thermal dissipation of absorbed light energy. Then, a short-term light stress was applied to evaluate the plasticity of the photosynthetic apparatus. Both shallow and mesophotic colonies showed fast acclimation to the low light regime. In contrast, under the high light regime, mesophotic colonies showed a limited capacity to dissipate light energy and were strongly photoinhibited, though their PSI activity was partly preserved and likely involved cyclic electron flow. This study shows how important the photosynthetic alternative electron flows are in acclimation processes to light and how the plasticity of the photosynthetic processes in Symbiodiniaceae may shape the vertical distribution of the coral holobionts.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sarradin, Pierre-Marie; Matabos, Marjolaine; Gautier, Laurent;

    Momarsat 2022 cruise report: summary of dives and operations, and position of moorings and observation infrastructures and sampling locations

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5281/zenodo...
    Other ORP type . 2023
    License: CC BY
    Data sources: Sygma
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5281/zenodo...
      Other ORP type . 2023
      License: CC BY
      Data sources: Sygma
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Love, Connor;

    The creation, movement, and consumption of distinct biomolecules by marine organisms has far reaching implications regarding ecosystem material and energy flow and how we manage the marine environment. Lipids are ubiquitous, energy rich biomolecules that are essential for all life and are used for cell membrane structure, energy storage and serve as useful indicators for ecosystem and food web dynamics. In this dissertation, the flow of specific lipid biomolecules through multiple marine environments is measured, explored, and clarified to better understand biogeochemical cycles, marine food webs and ecosystem connectivity. In the first chapter of my dissertation, I measure, quantify, and close the loop of the open ocean microbial hydrocarbon cycle, with implications for priming effects of the ocean microbiome to oil spills. It is estimated that seeps, spills, and other oil pollution introduce ~ 1.3 million tons (1.3 Tg) of hydrocarbons into the ocean each year. Additionally, it is known that globally abundant marine cyanobacteria Prochlorococcus and Synechococcus which account for ~25% of ocean net primary production also produce hydrocarbons from fatty acids. But little is known about the size, turnover and fate of these cyanobacterial hydrocarbons and the implications for the ocean’s microbiome response to future oil spills. From a research expedition in the North Atlantic, I report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane which correlates tightly with fluorescence and Prochlorococcus abundance in oligotrophic waters. Using chemical and isotopic tracing I find that pentadecane production and diel dynamics mainly occurs in the lower euphotic zone at the deep chlorophyll maximum. I estimate the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100 to 500-fold, with cyanobacteria producing ~ 130-650 million tons of pentadecane per year. Analysis of sinking particles at the base of the euphotic zone show that nearly all pentadecane (< 0.001 % remaining) is consumed within the euphotic zone, suggesting near complete consumption of these hydrocarbons by hydrocarbon degrading microbes. These findings characterize a wide-spread microbial hydrocarbon cycle that selectively primes the ocean’s microbiome with long-chain alkanes. In the second chapter of my dissertation, I conduct a large-scale feeding experiment on a symbiotic reef-building coral (Stylophora pistillata) in the Red Sea to clarify fatty acid and isotopic biomarker patterns of coral heterotrophy for use in the field. Coral heterotrophy is an often-overlooked facet of coral nutrition that provides essential nutrients that help corals resist and recover from thermally induced bleaching that is degrading reef ecosystems around the world due to rising global ocean temperatures. Yet, methods for measuring coral mixotrophy, the balance between organic matter contributions to the coral host from autotrophic photo endosymbionts and heterotrophy on particles and plankton have typically been too coarse to elucidate source contributions. Through my experiment I show that fatty acids and isotopic biomarkers reliably separate experimental and reef nutritional source groups (heterotrophic or autotrophic). I show that heterotrophic fatty acid biomarkers are reliably recorded into coral host and symbiont tissues, with a divergent metabolic pattern of autotrophic biomarkers as feeding increases due to positive feedback of heterotrophy on the in hospite photo symbiont population. Additionally, I show that nitrogen and essential fatty acids are preferentially recorded into coral tissue while most heterotrophic carbon is respired or exuded as mucous; this shows that the use of bulk carbon isotopes as a feeding proxy for the last ~ 40 years is largely underestimating the contribution of heterotrophy to the trophic ecology of reef building corals. Overall, this finding underscores a connectivity between oceanic phyto- and zooplankton and reef-building coral. In the third chapter of my dissertation, I explore the mixotrophic differences of divergent bleaching responses of Acropora hyacinthus colonies on the forereef of Mo’orea during the 2019 mass bleaching event. During this bleaching event, all colonies of A. hyacinthus on the deep forereef (14 m) bleached and recovered, while colonies on the shallow forereef (5 m) near the reef crest resisted bleaching entirely, despite the same temperature stress. Using fatty acid and isotopic biomarkers I show through several lines of evidence that bleaching resistant colonies near the reef crest were likely consuming more particulate organic matter than deep forereef colonies. This conclusion is supported by isotopic feeding proxies, less isotopic niche overlap of the host and symbiont of resistant colonies, and larger proportions of putative POM fatty acid biomarkers in the host of resistant colonies relative to recovered colonies. This interpretation is in line with observations that benthic communities on the reef crest are a net sink of oceanic POM and that increased reliance on heterotrophy is associated with bleaching resistance. These data show the vital importance of reef environment, coral heterotrophy, and planktonic subsidies in structuring bleaching response of corals in a warming ocean and ultimately show that the reef crest may serve as a potent zone for reseeding coral populations after marine heat waves.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/