Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
14 Research products, page 1 of 2

  • European Marine Science
  • Other research products
  • EU
  • AU
  • Earth System Science Data (ESSD)

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Ribotti, Alberto; Sorgente, Roberto; Pessini, Federica; Cucco, Andrea; Quattrocchi, Giovanni; Borghini, Mireno;
    Project: EC | COMMON SENSE (614155), EC | MYOCEAN2 (283367)

    Since 2000, and for the following 20 years, hydrological data of the Mediterranean Sea, with a particular focus on the western and central Mediterranean sub-basins, have been acquired to study the hydrodynamics at both coastal and open sea scales. In total, 1468 hydrological casts were realized in 29 oceanographic cruises planned due to scientific purposes linked with funding research projects but were also sometimes driven by sea conditions and type of vessel. After accurate quality assurance and control, following standard procedures, all hydrological data were included in four online public open-access repositories in SEANOE (SEA scieNtific Open data Edition), available from https://doi.org/10.17882/87567 (Ribotti et al., 2022). Hydrological and dissolved oxygen data are always present in all of the datasets, whereas pH, fluorescence, turbidity, and chromophoric dissolved organic matter (CDOM) are available just for some cruises. Samplings were carried out mainly along transects, with some repetition over the years. The results of two data analyses, i.e., staircase systems in the Tyrrhenian Sea and in the Algero-Provençal sub-basin and spreading of the Western Mediterranean Transient, are mentioned.

  • Open Access English
    Authors: 
    Kraan, Casper; Greenfield, Barry L.; Thrush, Simon F.;
    Project: EC | BAYESIANMETAFLATS (298380)

    Understanding how the plants and animals that live in the sea floor vary in their spatial patterns of diversity and abundance is fundamental to gaining insight into the role of biodiversity in maintaining ecosystem functioning in coastal ecosystems, as well as advancing the modelling of species distributions under realistic assumptions. Yet, it is virtually unknown how the relationships between abundance patterns and different biotic and environmental processes change depending on spatial scales, which is mainly due to a lack of data. Within the project Spatial Organization of Species Distributions: Hierarchical and Scale-Dependent Patterns and Processes in Coastal Seascapes at the National Institute for Water and Atmospheric Research (NIWA) in New Zealand we collected multi-scale and high-resolution data on macrobenthic biodiversity. We found 146 species dominated by bivalves, polychaetes, and crustaceans (>500 µm) that live hidden in marine sandflats and collected point measurements of important environmental variables (sediment grain-size distributions, chlorophyll a concentration, organic content, and visible sandflat parameters) in three large intertidal harbours (Kaipara, Tauranga, and Manukau). In each harbour we sampled 400 points for macrobenthic community composition and abundances, as well as the full set of environmental variables. Using an elaborate sampling design, we were able to cover scales from 30  cm to a maximal extent of 1 km. All data and extensive metadata are available from the data publisher PANGAEA via the persistent identifier https://doi.org/10.1594/PANGAEA.903448 (Kraan et al., 2019).

  • Open Access English
    Authors: 
    Lauvset, Siv Kari; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Antón; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; +7 more
    Project: EC | SEADATANET II (283607), NSF | Support for International... (1243377), NSF | Southern Ocean Carbon and... (1425989), NSF | Collaborative Research: C... (0825163), EC | AtlantOS (633211), EC | CARBOCHANGE (264879)

    We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).

  • Open Access English
    Authors: 
    Olsen, Are; Key, Robert M.; Heuven, Steven; Lauvset, Siv K.; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; +6 more
    Project: NSF | Support for International... (1243377), NSF | Southern Ocean Carbon and... (1425989), NSF | Collaborative Research: C... (0825163), EC | AtlantOS (633211), EC | CARBOCHANGE (264879)

    Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 6 µmol kg−1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.The original data and their documentation and doi codes are available at the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/GLODAPv2/). This site also provides access to the calibrated data product, which is provided as a single global file or four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under the doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2. The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2 methods and products and includes a broad overview of the secondary quality control results. The magnitude of and reasoning behind each adjustment is available on a per-cruise and per-variable basis in the online Adjustment Table.

  • Other research product . Other ORP type . 2018
    Open Access English
    Authors: 
    Le Quéré, Corinne; Andres, Robert J.; Boden, Tom A.; Conway, Thomas; Houghton, Richard A.; House, Jo I.; Marland, Gregg; Peters, Glen Philip; van der Werf, Guido R.; Ahlström, Anders; +24 more
    Project: EC | CARBOCHANGE (264879), EC | COMBINE (226520), EC | GEOCARBON (283080)

    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013

  • Other research product . Other ORP type . 2018
    Open Access English
    Authors: 
    Sabine, C. L.; Hankin, S.; Koyuk, H.; Bakker, D. C. E.; Pfeil, B.; Olsen, A.; Metzl, N.; Kozyr, A.; Fassbender, A.; Manke, A.; +66 more
    Publisher: Copernicus Publications
    Project: EC | CARBOCHANGE (264879), NSF | Support for International... (0938349), NSF | Support for the Intergove... (1068958)

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT). The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2) product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles), but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions).

  • Open Access English
    Authors: 
    Cook, A. J.; Murray, T.; Luckman, A.; Vaughan, D. G.; Barrand, N. E.;
    Project: EC | ICE2SEA (226375)

    A high resolution surface topography Digital Elevation Model (DEM) is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S), based on ASTER Global Digital Elevation Model (GDEM) data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA) imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE) from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM), and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (doi:10.5060/D47P8W9D).

  • Open Access English
    Authors: 
    Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; +4 more
    Project: EC | ICE2SEA (226375), UKRI | Investigating the Dynamic... (NE/G005796/1), NSF | RAPID: Recovery of Data f... (1061864)

    We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.

  • Open Access
    Authors: 
    Pinnegar, J. K.; Goñi, N.; Trenkel, V. M.; Arrizabalaga, H.; Melle, W.; Keating, J.; Óskarsson, G.;
    Project: EC | EURO-BASIN (264933)

    There is increasing demand for information on predator–prey interactions in the ocean as a result of legislative commitments aimed at achieving sustainable exploitation. However, comprehensive data sets are lacking for many fish species and this has hampered development of multispecies fisheries models and the formulation of effective food-web indicators. This work describes a new compilation of stomach content data for five pelagic fish species (herring, blue whiting, mackerel, albacore and bluefin tuna) sampled across the northeast Atlantic and submitted to the PANGAEA open-access data portal (www.pangaea.de). We provide detailed descriptions of sample origin and of the corresponding database structures. We describe the main results in terms of diet composition and predator–prey relationships. The feeding preferences of small pelagic fish (herring, blue whiting, mackerel) were sampled over a very broad geographic area within the North Atlantic basin, from Greenland in the west, to the Lofoten Islands in the east and from the Bay of Biscay northwards to the Arctic. This analysis revealed significant differences in the prey items selected in different parts of the region at different times of year. Tunas (albacore and bluefin) were sampled in the Bay of Biscay and Celtic Sea. Dominant prey items for these species varied by location, year and season. This data compilation exercise represents one of the largest and most wide-ranging ever attempted for pelagic fish in the North Atlantic. The earliest data included in the database were collected in 1864, whereas the most recent were collected in 2012. Data sets are available at doi:10.1594/PANGAEA.820041 and doi:10.1594/PANGAEA.826992.

  • Open Access English
    Authors: 
    Huse Geir; MacKenzie Brian R; Trenkel Verena M; Doray Mathieu; Nøttestad Leif; Óskarsson Guomundur J;
    Project: EC | EURO-BASIN (264933)

    The North Atlantic is a productive marine region which has supported important commercial fisheries for centuries. Many of these fisheries have exploited the pelagic species, including herring, blue whiting and tuna. Here we present data on the distribution of herring and blue whiting based on the international ecosystem survey in the Nordic Seas (IESNS), the bottom trawl survey in the Bay of Biscay and Celtic Sea (EVHOE) and the pelagic survey in the Bay of Biscay (PELGAS). We also present catch data on bluefin tuna, which has been depleted for decades but historically used to be a key predator on the other pelagic stocks during summer. The results show that there were substantial changes in the herring and blue whiting distribution during the 1990s and early 2000s. The earliest bluefin tuna catches noted were in 1907. The catches in the Norwegian Sea area peaked in the 1950s and there have been very small catches since the 1980s. The reported catches in the Mediterranean, on the other hand, peaked in the late 1990s and subsequently had a strong reduction.