Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
172 Research products, page 1 of 18

  • European Marine Science
  • Other research products
  • Other ORP type
  • EU
  • GR
  • JP
  • English
  • European Marine Science

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Other research product . Other ORP type . 2023
    Open Access English
    Authors: 
    Sarradin, Pierre-Marie; Matabos, Marjolaine; Gautier, Laurent;
    Publisher: Zenodo
    Project: EC | iAtlantic (818123)

    Momarsat 2022 cruise report: summary of dives and operations, and position of moorings and observation infrastructures and sampling locations

  • Open Access English
    Authors: 
    Stefanidis Fotios; Stefanou Evangelos; Boulougouris Evangelos; Karagiannidis Lazaros; Sotiralis Panagiotis; Annetis Emmanouil; Balet Olivier; Veltsistas Panagiotis;
    Publisher: Zenodo
    Project: EC | SafePASS (815146)

    Despite the current high level of safety and the efforts to make passenger ships resilient to most fire and flooding scenarios, there are still gaps and challenges in the marine emergency response and ship evacuation processes. Those challenges arise from the fact that both processes are complex, multi-variable problems that rely on parameters involving not only people and technology but also procedural and managerial issues. SafePASS Project, funded under EU’s Horizon 2020 Research and Innovation Programme, is set to radically redefine the evacuation processes by introducing new equipment, expanding the capabilities of legacy systems on-board, proposing new Life-Saving Appliances and ship layouts, and challenging the current international regulations, hence reducing the uncertainty, and increasing the efficiency in all the stages of ship evacuation and abandonment process.

  • Open Access English
    Authors: 
    Galgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; +2 more
    Publisher: Zenodo
    Project: EC | POSEIDOMM (702747)

    Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.

  • Other research product . Other ORP type . 2022
    Open Access English
    Authors: 
    Katharina Biely;
    Publisher: Zenodo
    Project: EC | SUFISA (635577)

    This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.

  • Open Access English
    Authors: 
    Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;
    Publisher: Zenodo
    Project: EC | Blue Cloud (862409), EC | EurofleetsPlus (824077), EC | AtlantECO (862923), EC | JERICO-S3 (871153), EC | NAUTILOS (101000825), EC | ODYSSEA (727277), EC | MISSION ATLANTIC (862428), EC | iAtlantic (818123), EC | EuroSea (862626), EC | ATLAS (678760)

    Ten innovative EU projects to build ocean observation systems that provide input for evidence-based management of the ocean and the Blue Economy, have joined forces in the strong cluster ‘Nourishing Blue Economy and Sharing Ocean Knowledge’. Under the lead of the EuroSea project, the group published a joint policy brief listing recommendations for sustainable ocean observation and management. The cooperation is supported by the EU Horizon Results Booster and enables the group to achieve a higher societal impact. The policy brief will be presented to the European Commission on 15 October 2021. The ocean covers 70% of the Earth’s surface and provides us with a diverse set of ecosystem services that we cannot live without or that significantly improve our quality of life. It is the primary controller of our climate, plays a critical role in providing the air we breathe and the fresh water we drink, supplies us with a large range of exploitable resources (from inorganic resources such as sand and minerals to biotic resources such as seafood), allows us to generate renewable energy, is an important pathway for world transport, an important source of income for tourism, etc. The Organisation for Economic Cooperation and Development (OECD) evaluates the Blue Economy to currently represent 2.5% of the world economic value of goods and services produced, with the potential to further double in size by 2030 (seabed mining, shipping, fishing, tourism, renewable energy systems and aquaculture will intensify). However, the overall consequences of the intensification of human activities on marine ecosystems and their services (such as ocean warming, acidification, deoxygenation, sea level rise, changing distribution and abundance of fish etc.) are still poorly quantified. In addition, on larger geographic and temporal scales, marine data currently appear fragmented, are inhomogeneous, contain data gaps and are difficult to access. This limits our capacity to understand the ocean variability and sustainably manage the ocean and its resources. Consequently, there is a need to develop a framework for more in-depth understanding of marine ecosystems, that links reliable, timely and fit-for-purpose ocean observations to the design and implementation of evidence-based decisions on the management of the ocean. To adequately serve governments, societies, the sustainable Blue Economy and citizens, ocean data need to be collected and delivered in line with the Value Chain of Ocean Information: 1) identification of required data; 2) deployment and maintenance of instruments that collect the data; 3) delivery of data and derived information products; and 4) impact assessment of services to end users. To provide input to the possible future establishment of such a framework, ten innovative EU projects to build user-focused, interdisciplinary, responsive and sustained ocean information systems and increase the sustainability of the Blue Economy, joined forces in a strong cluster to better address key global marine challenges. Under the lead of the EuroSea project, the group translated its common concerns to recommendations and listed these in the joint policy brief ‘Nourishing Blue Economy and Sharing Ocean Knowledge. Ocean Information for Sustainable Management.’. Following up on these recommendations will strengthen the entire Value Chain of Ocean Information and ensure sound sustainable ocean management. In this way, the 10 projects jointly strive to achieve goals set out in the EU Green Deal, the Paris Agreement (United Nations Framework Convention on Climate Change) and the United Nations 2021-2030 Decade of Ocean Science for Sustainable Ocean Development. Toste Tanhua (GEOMAR), EuroSea coordinator: “It was great to collaborate with these other innovative projects and make joint recommendations based on different perspectives and expertise.”

  • Open Access English
    Authors: 
    Bode, A. (Antonio); Olivar, M.P. (María Pilar); López-Pérez, C. (Cristina); Hernández-León, S. (Santiago);
    Publisher: Centro Oceanográfico de A Coruña
    Country: Spain
    Project: EC | TRIATLAS (817578)

    The values of natural abundance of stable isotopes were measured in 13 micronekton fish species sampled during the MAFIA cruise (North Atlantic, April 2015). This dataset contains the values obtained for carbon and nitrogen in bulk tissues, and nitrogen values in amino acids. Length data and the number of individuals analysed for each species are also provided. Mesopelagic fishes were collected using a ''Mesopelagos” net (5x7 m mouth opening, 58 m total lenght) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers (Olivar et al., 2017). For C:N and stable isotope analyses, individual fish were eviscerated, freeze-dried and weighted. Aliquots of muscular tissue (or whole individuals for species of small size) were analyzed in an elemental analyzer (bulk tissues, Olivar et al., 2019) or a gas chromatograph (derivatized amino acids, Mompeán et al., 2016) coupled to isotope-ratio mass spectrometers. This research was funded by projects MAFIA (CTM2012-39587-C04), BATHYPELAGIC (CTM2016-78853-R), and QLOCKS (PID2020-115620RB-100) from the Plan Estatal de I+D+I (Spain), projects SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578), from the European Union (Horizon 2020 Research and Innovation Programme), and the support through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).

  • Open Access English
    Authors: 
    Ramos, Manuela; Dominguez-Carrió, Carlos; Morato, Telmo;
    Publisher: Zenodo
    Project: EC | ATLAS (678760), EC | iAtlantic (818123)

    Objectives: To explore deep-sea areas of the Azores EEZ to better understand the distribution patterns of large VME species and commercial fishes. Specifically, the objectives of the cruise were to (i) continue the characterization of benthic communities inhabiting the slopes of Terceira and neighboring submarine ridges, (ii) identify new areas that may fit the FAO definition of what constitutes a Vulnerable Marine Ecosystem; and (iii) to contribute with additional data to address patterns and drivers of the distribution of deep-sea benthic biodiversity in the Azores region. It will also provide valuable information in the context of Good Environmental Status (GES), Marine Spatial Planning (MSP) and provide new insights on how to sustainably manage deep-sea ecosystems. Vessel: R/V Pelagia Chief scientist: Fleur Visser (NIOZ) Scientific team: Manuela Ramos (IMAR-UAç) Cruise summary: Six new dives were performed by the towed camera system of R/V Pelagia during the cruise. Four dives were performed on the southern Terceira island depression, covering a depth range between 1300 and 1900 m. The remaining two dives were performed in the Serreta Ridge, WNW of Terceira, between 780 and 1100 m depth. Overall, we collected 6 h of new video footage.

  • Other research product . Other ORP type . 2021
    Open Access English
    Authors: 
    Fuchs, Matthias; van Delden, Lona; Lehmann, Nele; Windirsch, Torben;
    Publisher: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Country: Germany
    Project: EC | FluxWIN (851181)
  • Open Access English
    Authors: 
    Bode, A. (Antonio); Olivar, M.P. (María Pilar); Hernández-León, S. (Santiago);
    Publisher: Centro Oceanográfico de A Coruña
    Country: Spain
    Project: EC | TRIATLAS (817578)

    The values of natural abundance of stable isotopes were measured in 13 micronekton fish species sampled during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the values obtained for carbon and nitrogen in bulk tissues, and nitrogen values in amino acids. Length and biomass data for each individual analyzed are also provided. Fishes were collected using a ''Mesopelagos” net (5x7 m mouth opening, 58 m total lenght) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers (Olivar et al., 2017). Individual fish were eviscerated, freeze-dried and weighted. Aliquots of muscular tissue (or whole individuals for species of small size) were analyzed in an elemental analyzer (bulk tissues, Olivar et al., 2019) or a gas chromatograph (derivatized amino acids, Mompeán et al., 2016) coupled to isotope-ratio mass spectrometers. Carbon analyses were made before and after removal of lipids with a mixture of trichloromethane:methanol:water. This research was funded by projects BATHYPELAGIC (CTM2016-78853-R) from the Plan Estatal de I+D+I (Spain), SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578), from the European Union (Horizon 2020 Research and Innovation Programme), and Grant Number IN607A2018/2 from the Axencia Galega de Innovación (GAIN, Xunta de Galicia, Spain).

  • Open Access English
    Authors: 
    Smith, Craig R.; Tunnicliffe, Verena; Colaco, Ana; Drazen, Jeffrey C.; Gollner, Sabine; Levin, Lisa A.; Mestre, Nélia; Metaxas, Anna; Molodtsova, Tina N.; Morato, Telmo; +3 more
    Publisher: ELSEVIER SCIENCE LONDON
    Country: Portugal
    Project: EC | SCAN-Deep (747946), EC | ATLAS (678760)

    Gordon & Betty Moore FoundationGordon and Betty Moore Foundation [5596]; Canada Research Chairs FoundationCanada Research Chairs; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant [747946]; Fundacao para a Ciencia e Tecnologia I.P. Portugal (FCT); Direcao-Geral de Politica do Mar (DGPM) [2/2017/001-MiningImpact 2]; FCTPortuguese Foundation for Science and TechnologyEuropean Commission [CEECIND005262017, UID/MAR/00350/2013, IF/01194/2013, IF/00029/2014/CP1230/CT0002, Mining2/0005/2017]; RF State Assignment [0149-2019-0009]; Horizon 2020 Agricultural Interoperability and Analysis System (ATLAS) projects [678760]; JM Kaplan Fund; National Science FoundationNational Science Foundation (NSF) [OCE 1634172]; JPI Oceans project Mining Impact -Environmental Impacts and Risks of Deep-Sea Mining Aug 2018-Feb 2022 (NWO-ALW) [856.18.001] info:eu-repo/semantics/publishedVersion

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
172 Research products, page 1 of 18
  • Other research product . Other ORP type . 2023
    Open Access English
    Authors: 
    Sarradin, Pierre-Marie; Matabos, Marjolaine; Gautier, Laurent;
    Publisher: Zenodo
    Project: EC | iAtlantic (818123)

    Momarsat 2022 cruise report: summary of dives and operations, and position of moorings and observation infrastructures and sampling locations

  • Open Access English
    Authors: 
    Stefanidis Fotios; Stefanou Evangelos; Boulougouris Evangelos; Karagiannidis Lazaros; Sotiralis Panagiotis; Annetis Emmanouil; Balet Olivier; Veltsistas Panagiotis;
    Publisher: Zenodo
    Project: EC | SafePASS (815146)

    Despite the current high level of safety and the efforts to make passenger ships resilient to most fire and flooding scenarios, there are still gaps and challenges in the marine emergency response and ship evacuation processes. Those challenges arise from the fact that both processes are complex, multi-variable problems that rely on parameters involving not only people and technology but also procedural and managerial issues. SafePASS Project, funded under EU’s Horizon 2020 Research and Innovation Programme, is set to radically redefine the evacuation processes by introducing new equipment, expanding the capabilities of legacy systems on-board, proposing new Life-Saving Appliances and ship layouts, and challenging the current international regulations, hence reducing the uncertainty, and increasing the efficiency in all the stages of ship evacuation and abandonment process.

  • Open Access English
    Authors: 
    Galgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; +2 more
    Publisher: Zenodo
    Project: EC | POSEIDOMM (702747)

    Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.

  • Other research product . Other ORP type . 2022
    Open Access English
    Authors: 
    Katharina Biely;
    Publisher: Zenodo
    Project: EC | SUFISA (635577)

    This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.

  • Open Access English
    Authors: 
    Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;
    Publisher: Zenodo
    Project: EC | Blue Cloud (862409), EC | EurofleetsPlus (824077), EC | AtlantECO (862923), EC | JERICO-S3 (871153), EC | NAUTILOS (101000825), EC | ODYSSEA (727277), EC | MISSION ATLANTIC (862428), EC | iAtlantic (818123), EC | EuroSea (862626), EC | ATLAS (678760)

    Ten innovative EU projects to build ocean observation systems that provide input for evidence-based management of the ocean and the Blue Economy, have joined forces in the strong cluster ‘Nourishing Blue Economy and Sharing Ocean Knowledge’. Under the lead of the EuroSea project, the group published a joint policy brief listing recommendations for sustainable ocean observation and management. The cooperation is supported by the EU Horizon Results Booster and enables the group to achieve a higher societal impact. The policy brief will be presented to the European Commission on 15 October 2021. The ocean covers 70% of the Earth’s surface and provides us with a diverse set of ecosystem services that we cannot live without or that significantly improve our quality of life. It is the primary controller of our climate, plays a critical role in providing the air we breathe and the fresh water we drink, supplies us with a large range of exploitable resources (from inorganic resources such as sand and minerals to biotic resources such as seafood), allows us to generate renewable energy, is an important pathway for world transport, an important source of income for tourism, etc. The Organisation for Economic Cooperation and Development (OECD) evaluates the Blue Economy to currently represent 2.5% of the world economic value of goods and services produced, with the potential to further double in size by 2030 (seabed mining, shipping, fishing, tourism, renewable energy systems and aquaculture will intensify). However, the overall consequences of the intensification of human activities on marine ecosystems and their services (such as ocean warming, acidification, deoxygenation, sea level rise, changing distribution and abundance of fish etc.) are still poorly quantified. In addition, on larger geographic and temporal scales, marine data currently appear fragmented, are inhomogeneous, contain data gaps and are difficult to access. This limits our capacity to understand the ocean variability and sustainably manage the ocean and its resources. Consequently, there is a need to develop a framework for more in-depth understanding of marine ecosystems, that links reliable, timely and fit-for-purpose ocean observations to the design and implementation of evidence-based decisions on the management of the ocean. To adequately serve governments, societies, the sustainable Blue Economy and citizens, ocean data need to be collected and delivered in line with the Value Chain of Ocean Information: 1) identification of required data; 2) deployment and maintenance of instruments that collect the data; 3) delivery of data and derived information products; and 4) impact assessment of services to end users. To provide input to the possible future establishment of such a framework, ten innovative EU projects to build user-focused, interdisciplinary, responsive and sustained ocean information systems and increase the sustainability of the Blue Economy, joined forces in a strong cluster to better address key global marine challenges. Under the lead of the EuroSea project, the group translated its common concerns to recommendations and listed these in the joint policy brief ‘Nourishing Blue Economy and Sharing Ocean Knowledge. Ocean Information for Sustainable Management.’. Following up on these recommendations will strengthen the entire Value Chain of Ocean Information and ensure sound sustainable ocean management. In this way, the 10 projects jointly strive to achieve goals set out in the EU Green Deal, the Paris Agreement (United Nations Framework Convention on Climate Change) and the United Nations 2021-2030 Decade of Ocean Science for Sustainable Ocean Development. Toste Tanhua (GEOMAR), EuroSea coordinator: “It was great to collaborate with these other innovative projects and make joint recommendations based on different perspectives and expertise.”

  • Open Access English
    Authors: 
    Bode, A. (Antonio); Olivar, M.P. (María Pilar); López-Pérez, C. (Cristina); Hernández-León, S. (Santiago);
    Publisher: Centro Oceanográfico de A Coruña
    Country: Spain
    Project: EC | TRIATLAS (817578)

    The values of natural abundance of stable isotopes were measured in 13 micronekton fish species sampled during the MAFIA cruise (North Atlantic, April 2015). This dataset contains the values obtained for carbon and nitrogen in bulk tissues, and nitrogen values in amino acids. Length data and the number of individuals analysed for each species are also provided. Mesopelagic fishes were collected using a ''Mesopelagos” net (5x7 m mouth opening, 58 m total lenght) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers (Olivar et al., 2017). For C:N and stable isotope analyses, individual fish were eviscerated, freeze-dried and weighted. Aliquots of muscular tissue (or whole individuals for species of small size) were analyzed in an elemental analyzer (bulk tissues, Olivar et al., 2019) or a gas chromatograph (derivatized amino acids, Mompeán et al., 2016) coupled to isotope-ratio mass spectrometers. This research was funded by projects MAFIA (CTM2012-39587-C04), BATHYPELAGIC (CTM2016-78853-R), and QLOCKS (PID2020-115620RB-100) from the Plan Estatal de I+D+I (Spain), projects SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578), from the European Union (Horizon 2020 Research and Innovation Programme), and the support through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).

  • Open Access English
    Authors: 
    Ramos, Manuela; Dominguez-Carrió, Carlos; Morato, Telmo;
    Publisher: Zenodo
    Project: EC | ATLAS (678760), EC | iAtlantic (818123)

    Objectives: To explore deep-sea areas of the Azores EEZ to better understand the distribution patterns of large VME species and commercial fishes. Specifically, the objectives of the cruise were to (i) continue the characterization of benthic communities inhabiting the slopes of Terceira and neighboring submarine ridges, (ii) identify new areas that may fit the FAO definition of what constitutes a Vulnerable Marine Ecosystem; and (iii) to contribute with additional data to address patterns and drivers of the distribution of deep-sea benthic biodiversity in the Azores region. It will also provide valuable information in the context of Good Environmental Status (GES), Marine Spatial Planning (MSP) and provide new insights on how to sustainably manage deep-sea ecosystems. Vessel: R/V Pelagia Chief scientist: Fleur Visser (NIOZ) Scientific team: Manuela Ramos (IMAR-UAç) Cruise summary: Six new dives were performed by the towed camera system of R/V Pelagia during the cruise. Four dives were performed on the southern Terceira island depression, covering a depth range between 1300 and 1900 m. The remaining two dives were performed in the Serreta Ridge, WNW of Terceira, between 780 and 1100 m depth. Overall, we collected 6 h of new video footage.

  • Other research product . Other ORP type . 2021
    Open Access English
    Authors: 
    Fuchs, Matthias; van Delden, Lona; Lehmann, Nele; Windirsch, Torben;
    Publisher: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Country: Germany
    Project: EC | FluxWIN (851181)
  • Open Access English
    Authors: 
    Bode, A. (Antonio); Olivar, M.P. (María Pilar); Hernández-León, S. (Santiago);
    Publisher: Centro Oceanográfico de A Coruña
    Country: Spain
    Project: EC | TRIATLAS (817578)

    The values of natural abundance of stable isotopes were measured in 13 micronekton fish species sampled during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the values obtained for carbon and nitrogen in bulk tissues, and nitrogen values in amino acids. Length and biomass data for each individual analyzed are also provided. Fishes were collected using a ''Mesopelagos” net (5x7 m mouth opening, 58 m total lenght) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers (Olivar et al., 2017). Individual fish were eviscerated, freeze-dried and weighted. Aliquots of muscular tissue (or whole individuals for species of small size) were analyzed in an elemental analyzer (bulk tissues, Olivar et al., 2019) or a gas chromatograph (derivatized amino acids, Mompeán et al., 2016) coupled to isotope-ratio mass spectrometers. Carbon analyses were made before and after removal of lipids with a mixture of trichloromethane:methanol:water. This research was funded by projects BATHYPELAGIC (CTM2016-78853-R) from the Plan Estatal de I+D+I (Spain), SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578), from the European Union (Horizon 2020 Research and Innovation Programme), and Grant Number IN607A2018/2 from the Axencia Galega de Innovación (GAIN, Xunta de Galicia, Spain).

  • Open Access English
    Authors: 
    Smith, Craig R.; Tunnicliffe, Verena; Colaco, Ana; Drazen, Jeffrey C.; Gollner, Sabine; Levin, Lisa A.; Mestre, Nélia; Metaxas, Anna; Molodtsova, Tina N.; Morato, Telmo; +3 more
    Publisher: ELSEVIER SCIENCE LONDON
    Country: Portugal
    Project: EC | SCAN-Deep (747946), EC | ATLAS (678760)

    Gordon & Betty Moore FoundationGordon and Betty Moore Foundation [5596]; Canada Research Chairs FoundationCanada Research Chairs; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant [747946]; Fundacao para a Ciencia e Tecnologia I.P. Portugal (FCT); Direcao-Geral de Politica do Mar (DGPM) [2/2017/001-MiningImpact 2]; FCTPortuguese Foundation for Science and TechnologyEuropean Commission [CEECIND005262017, UID/MAR/00350/2013, IF/01194/2013, IF/00029/2014/CP1230/CT0002, Mining2/0005/2017]; RF State Assignment [0149-2019-0009]; Horizon 2020 Agricultural Interoperability and Analysis System (ATLAS) projects [678760]; JM Kaplan Fund; National Science FoundationNational Science Foundation (NSF) [OCE 1634172]; JPI Oceans project Mining Impact -Environmental Impacts and Risks of Deep-Sea Mining Aug 2018-Feb 2022 (NWO-ALW) [856.18.001] info:eu-repo/semantics/publishedVersion