Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
30 Research products, page 1 of 3

  • European Marine Science
  • Other research products
  • Other ORP type
  • NO
  • GR

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Hopwood, Mark J.; Santana-González, Carolina; Gallego-Urrea, Julian Alberto; Sanchez, Nicolas; Achterberg, Eric P.; Ardelan, Murat Van; Gledhill, Martha; González-Dávila, Melchor; Hoffmann, Linn; Leiknes, Øystein; +3 more
    Project: EC | OCEAN-CERTAIN (603773)

    The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist almost exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II), the speciation of which is uncertain. Here we deploy flow injection analysis to measure in situ Fe(II) concentrations during a series of mesocosm/microcosm/multistressor experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During five mesocosm/microcosm/multistressor experiments in Svalbard and Patagonia, where dissolved (0.2 µm) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24 %–65 % of DFe, suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were less than calculated constants derived from ambient temperature, salinity, pH, and dissolved O2. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations <2 nM, suggesting that the effect may have arisen from organic Fe(II) ligands. This apparent enhancement of Fe(II) stability under post-bloom conditions and the existence of such a high fraction of DFe as Fe(II) challenge the assumption that DFe speciation in coastal seawater is dominated by ligand bound-Fe(III) species.

  • Other research product . Other ORP type . 2019
    Open Access English
    Authors: 
    Guo, Chuncheng; Nisancioglu, Kerim H.; Bentsen, Mats; Bethke, Ingo; Zhang, Zhongshi;
    Project: EC | ICE2ICE (610055)

    An equilibrium simulation of Marine Isotope Stage 3 (MIS3) climate with boundary conditions characteristic of Greenland Interstadial 8 (GI-8; 38 kyr BP) is carried out with the Norwegian Earth System Model (NorESM). A computationally efficient configuration of the model enables long integrations at relatively high resolution, with the simulations reaching a quasi-equilibrium state after 2500 years. We assess the characteristics of the simulated large-scale atmosphere and ocean circulation, precipitation, ocean hydrography, sea ice distribution, and internal variability. The simulated MIS3 interstadial near-surface air temperature is 2.9 ∘C cooler than the pre-industrial (PI). The Atlantic meridional overturning circulation (AMOC) is deeper and intensified by ∼13 %. There is a decrease in the volume of Antarctic Bottom Water (AABW) reaching the Atlantic. At the same time, there is an increase in ventilation of the Southern Ocean, associated with a significant expansion of Antarctic sea ice and concomitant intensified brine rejection, invigorating ocean convection. In the central Arctic, sea ice is ∼2 m thicker, with an expansion of sea ice in the Nordic Seas during winter. Attempts at triggering a non-linear transition to a cold stadial climate state, by varying atmospheric CO2 concentrations and Laurentide Ice Sheet height, suggest that the simulated MIS3 interstadial state in the NorESM is relatively stable, thus underscoring the role of model dependency, and questioning the existence of unforced abrupt transitions in Greenland climate in the absence of interactive ice sheet–meltwater dynamics.

  • Open Access English
    Authors: 
    Lauvset, Siv Kari; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Antón; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; +7 more
    Project: EC | SEADATANET II (283607), NSF | Support for International... (1243377), NSF | Southern Ocean Carbon and... (1425989), NSF | Collaborative Research: C... (0825163), EC | AtlantOS (633211), EC | CARBOCHANGE (264879)

    We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).

  • Other research product . Other ORP type . 2018
    Open Access English
    Authors: 
    Le Quéré, Corinne; Andres, Robert J.; Boden, Tom A.; Conway, Thomas; Houghton, Richard A.; House, Jo I.; Marland, Gregg; Peters, Glen Philip; van der Werf, Guido R.; Ahlström, Anders; +24 more
    Project: EC | CARBOCHANGE (264879), EC | COMBINE (226520), EC | GEOCARBON (283080)

    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013

  • Open Access English
    Authors: 
    Jeansson, E.; Bellerby, R. G. J.; Skjelvan, I.; Frigstad, H.; Ólafsdóttir, S. R.; Olafsson, J.;
    Publisher: Copernicus Publications
    Project: EC | EURO-BASIN (264933), EC | CARBOCHANGE (264879), EC | GREENSEAS (265294)

    This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 ± 0.5 and 0.45 ± 0.09 mol m−2 yr−1, respectively, and the annual air–sea uptake of atmospheric CO2 is 4.4 ± 1.1 mol C m−2 yr−1. The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 ± 1.0 mol C m−2 yr−1. The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season.

  • Other research product . Other ORP type . 2018
    Open Access English
    Authors: 
    Sabine, C. L.; Hankin, S.; Koyuk, H.; Bakker, D. C. E.; Pfeil, B.; Olsen, A.; Metzl, N.; Kozyr, A.; Fassbender, A.; Manke, A.; +66 more
    Publisher: Copernicus Publications
    Project: EC | CARBOCHANGE (264879), NSF | Support for International... (0938349), NSF | Support for the Intergove... (1068958)

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT). The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2) product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles), but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions).

  • Open Access English
    Authors: 
    Artioli, Yuri; Blackford, Jerry C.; Nondal, Gisle; Bellerby, Richard; Wakelin, Sarah L.; Holt, Jason T.; Butenschön, Momme; Allen, Julian Icarus;
    Project: EC | EPOCA (211384), EC | MEECE (212085), UKRI | Regional Ecosystem &amp; ... (NE/H017372/1)

    The increase in atmospheric CO2 is a dual threat to the marine environment: from one side it drives climate change, leading to modifications in water temperature, circulation patterns and stratification intensity; on the other side it causes a decrease in marine pH (ocean acidification, or OA) due to the increase in dissolved CO2. Assessing the combined impact of climate change and OA on marine ecosystems is a challenging task. The response of the ecosystem to a single driver can be highly variable and remains still uncertain; additionally the interaction between these can be either synergistic or antagonistic. In this work we use the coupled oceanographic–ecosystem model POLCOMS-ERSEM driven by climate forcing to study the interaction between climate change and OA. We focus in particular on carbonate chemistry, primary and secondary production. The model has been run in three different configurations in order to assess separately the impacts of climate change on net primary production and of OA on the carbonate chemistry, which have been strongly supported by scientific literature, from the impact of biological feedbacks of OA on the ecosystem, whose uncertainty still has to be well constrained. The global mean of the projected decrease of pH at the end of the century is about 0.27 pH units, but the model shows significant interaction among the drivers and high variability in the temporal and spatial response. As a result of this high variability, critical tipping point can be locally and/or temporally reached: e.g. undersaturation with respect to aragonite is projected to occur in the deeper part of the central North Sea during summer. Impacts of climate change and of OA on primary and secondary production may have similar magnitude, compensating in some area and exacerbating in others.

  • Open Access English
    Authors: 
    Frigstad, Helene; Andersen, T.; Hessen, D. O.; Naustvoll, L. J.; Johnsen, Torbjørn Martin; Bellerby, Richard G. J.;
    Project: EC | EURO-BASIN (264933), EC | MEECE (212085)

    Seston is suspended particulate organic matter, comprising a mixture of autotrophic, heterotrophic and detrital material. Despite variable proportions of these components, marine seston often exhibits relatively small deviations from the Redfield ratio (C:N:P = 106:16:1). Two time-series from the Norwegian shelf in Skagerrak are used to identify drivers of the seasonal variation in seston elemental ratios. An ordination identified water mass characteristics and bloom dynamics as the most important drivers for determining C:N, while changes in nutrient concentrations and biomass were most important for the C:P and N:P relationships. There is no standardized method for determining the functional composition of seston and the fractions of POC, PON and PP associated with phytoplankton, therefore any such information has to be obtained by indirect means. In this study, a generalized linear model was used to differentiate between the live autotrophic and non-autotrophic sestonic fractions, and for both stations the non-autotrophic fractions dominated with respective annual means of 76 and 55%. This regression model approach builds on assumptions (e.g. constant POC:Chl-a ratio) and the robustness of the estimates were explored with a bootstrap analysis. In addition the autotrophic percentage calculated from the statistical model was compared with estimated phytoplankton carbon, and the two independent estimates of autotrophic percentage were comparable with similar seasonal cycles. The estimated C:nutrient ratios of live autotrophs were, in general, lower than Redfield, while the non-autotrophic C:nutrient ratios were higher than the live autotrophic ratios and above, or close to, the Redfield ratio. This is due to preferential remineralization of nutrients, and the P content mainly governed the difference between the sestonic fractions. Despite the seasonal variability in seston composition and the generally low contribution of autotrophic biomass, the variation observed in the total seston ratios was low compared to the variation found in dissolved and particulate pools. Sestonic C:N:P ratios close to the Redfield ratios should not be used as an indicator of phytoplankton physiological state, but could instead reflect varying contributions of sestonic fractions that sum up to an elemental ratio close to Redfield.

  • Open Access English
    Authors: 
    Christensen, Kai Håkon; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind;
    Publisher: Copernicus Publications
    Project: EC | MYOCEAN2 (283367), EC | MYWAVE (284455)

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  • Open Access English
    Authors: 
    Tsiola, Anastasia; Tsagaraki, Tatiana M.; Giannakourou, Antonia; Nikolioudakis, Nikolaos; Yücel, Nebil; Herut, Barak; Pitta, Paraskevi;
    Publisher: Frontiers Media S. A
    Country: Turkey
    Project: EC | MESOAQUA (228224)

    The impact of viral lysis and grazing by flagellates on bacterioplankton production was assessed during a mesocosm experiment in the Eastern Mediterranean Sea, in response to Saharan dust (SD) vs. mixed aerosols (A) addition. The results highlight a positive effect on bacterial abundance, production and growth rate (~1.2, ~2.4, and ~1.9-fold higher than the controls) in both SD and A, which was also confirmed by the increased portion of high DNA content bacteria (up to 48% of the bacterial community). Lytic viral production and the portion of bacterial production lost due to viral lysis were lower in SD and A after dust addition than in the controls (0.33 ± 0.17 × 106 virus-like particles mL-1 h-1 and 6 ± 4%, respectively). Potential ingestion rate of bacteria by flagellates increased upon dust enrichment, but did not differ between mesocosms. Larger predators possibly down regulated flagellate abundance, and the calculated portion of bacterial production lost due to flagellate grazing was probably an artifact. Higher frequency of lysogenic cells in A compared to SD and the controls four days after dust addition may reflect faster phosphorus limitation in A, due to receiving less dissolved inorganic phosphorus and more dissolved inorganic nitrogen than SD. Science Citation Index Expanded WOS: 000457690600057