Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
540 Research products, page 1 of 54

  • European Marine Science
  • Other research products
  • Other ORP type
  • European Commission

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Other research product . Other ORP type . 2022
    Open Access Dutch; Flemish
    Authors: 
    Katharina Biely;
    Publisher: Zenodo
    Project: EC | SUFISA (635577), EC | SUFISA (635577)

    The documents in these folders represent part of the qualitative data collection documentation. Research has been performed in Flanders (Belgium) in 2016 and 2017. Involved stakehodlers were flemish sugar beet farmers, processors as well as other value chain members. Though, the main stakeholders involved were farmers. The raw data cannot be published. Anonymized interview transcripts and focus group transcripts exist. However, as indicated in the informed consent, farmers did not agree to the raw data being published. The codes that resulted from data analysis are in this folder. Interview questions differed slightly from farmer to farmer as follow up questions may have been posed if needed. First interviews were performed, then focus groups were conducted and finally a workshop was organized. The qualitative reserach followed the research strategy and plan determined by the SUFISA project. On the project webpage (https://www.sufisa.eu/) more information can be found.

  • Other research product . Other ORP type . 2022
    Open Access English
    Authors: 
    Katharina Biely;
    Publisher: Zenodo
    Project: EC | SUFISA (635577), EC | SUFISA (635577)

    This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.

  • Other research product . Collection . Other ORP type . 2022
    Open Access English
    Authors: 
    Ehlert von Ahn, Cátia Milene; Böttcher, Michael Ernst; Dellwig, Olaf; Schmiedinger, Iris; Scholten, Jan Christoph;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | SGDBALTIC (293499)

    Short sediment cores were taken at six stations in Wismar Bay, southern Baltic Sea (Germany) in May 2019 using a Rumohr-Lot device. Our aim in this study was to investigate the role of diagenetic element fluxes and different fresh water sources, including submarine groundwater discharge, on the water column in the bay. Porewaters were extracted from the sediment cores by applying the rhizon technique at a resolution between 2 and 5 cm. The porewaters were analyzed for major and trace metals and selected nutrients using a ICP-OES (iCAP, 7400, Duo Thermo Fischer Scientific), total sulphide by a Specord 40 spectrophotometer (Analytik Jena), dissolved inorganic carbon (DIC) and δ13CDIC using an isotope gas mass spectrometre (MAT 253) coupled to a Gasbench II, and δ18OH2O, and δ2HH2O using a CRDS system (laser cavity-ring-down-spectroscopy, Picarro L2140- I). Sediment cores were further sliced at 2 to 4 cm resolution and each freeze-dried solid subsample was analyzed for contents of total carbon, nitrogen, and sulphur using an Elemental Analyzer (Euro Vector EuroEA 3, 052), inorganic carbon using an Elemental Analyzer multi EA (Analytik Jena), total mercury by a DMA-80 analyzer, and HCl-extractable Pb, Mn and Fe using an ICP-OES (iCAP, 7400, Duo Thermo Fischer Scientific).

  • Other research product . Other ORP type . Collection . 2022
    Open Access English
    Authors: 
    Baehr, Johanna;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | NACLIM (308299), EC | THOR (212643)

    This data set collection provides quality controlled temperature, conductivity and pressure measurements from moored instrumentation (Seabird Microcat) in the Denmark Strait. Practical salinity was calculated from the measured quantities and is provided as well. Temporal resolution of the time series is 10 to 20 minutes. The data was collected between 2005 to 2015 at the location of mooring DS2. This mooring is part of the Denmark Strait Overflow array and maintained by the Institute of Oceanography, University Hamburg. The purpose of the array is to monitor the properties and variability of the dense Denmark Strait Overflow.

  • Open Access English
    Authors: 
    Gómez-Letona, Markel; Arístegui, Javier; Hernández-Hernández, Nauzet; Alvarez-Salgado, Xose Anton; Álvarez, Marta; Delgadillo, Erick; Pérez-Lorenzo, Maria; Teira, Eva; Hernández-León, Santiago; Sebastian, Marta;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | SUMMER (817806)

    This dataset contains the results of the fluorescent dissolved organic matter characterisation (FDOM) and water mass optimum multiparameter analysis from the MAFIA cruise (Migrants and Active Flux In the Atlantic ocean). Samples were collected in the tropical and subtropical Atlantic during the MAFIA cruise (April 2015) on board the BIO Hespérides. Seawater samples for biogeochemical analyses were collected at 13 stations (from the Brazilian coast to the Canary Islands), from the surface down to 3500 m, using a General Oceanics oceanographic rosette equipped with 24 l PVC Niskin bottles. Fluorescence measurements were performed with a Perkin-Elmer LS55 spectrofluorometer and FDOM was characterised by means of a Parallel Factor analysis. The contribution of each water mass to each sample was objectively quantified applying an optimum multiparameter analysis (excluding mixed layer samples, here < 100 m). The aim of this dataset was to jointly characterise the FDOM and water mass distributions to infer the processes that shape the dissolved organic matter pool in the deep ocean (water mass mixing and history vs local processes).

  • Open Access English
    Authors: 
    Tuchen, Franz Philip (Ed.); Brandt, Peter (Ed.); Hahn, Johannes (Ed.); Hummels, Rebecca (Ed.); Krahmann, Gerd (Ed.); Bourles, Bernard (Ed.); Provost, Christine (Ed.); McPhaden, Michael J (Ed.); Toole, John M (Ed.);
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | TRIATLAS (817578), EC | PREFACE (603521)

    Since 2001, current velocities have been measured continuously as part of a multilateral collaboration, the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA), that regularly services a moored observatory located at 0°N, 23°W. Here, we present 20 years of full-depth current velocity observations at 0°N, 23°W. With the presented current velocity data product, we aim to provide an important and accessible reference data set against which models and reanalysis output could be validated. The velocity time series will also be helpful for studies focusing on long-term climate variability to search for connections with changes in the equatorial circulation over the last 20 years. Earlier versions of this data product have already been used in a variety of studies and provided a significant contribution to an overall improved understanding of equatorial ocean dynamics. The moored observatory at 0°N, 23°W is an ongoing example of a successful multinational collaboration extending over more than two decades.

  • Open Access English
    Authors: 
    Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;
    Publisher: Zenodo
    Project: EC | EurofleetsPlus (824077), EC | EuroSea (862626), EC | ODYSSEA (727277), EC | ATLAS (678760), EC | Blue Cloud (862409), EC | iAtlantic (818123), EC | JERICO-S3 (871153), EC | AtlantECO (862923), EC | NAUTILOS (101000825), EC | MISSION ATLANTIC (862428),...

    Ten innovative EU projects to build ocean observation systems that provide input for evidence-based management of the ocean and the Blue Economy, have joined forces in the strong cluster ‘Nourishing Blue Economy and Sharing Ocean Knowledge’. Under the lead of the EuroSea project, the group published a joint policy brief listing recommendations for sustainable ocean observation and management. The cooperation is supported by the EU Horizon Results Booster and enables the group to achieve a higher societal impact. The policy brief will be presented to the European Commission on 15 October 2021. The ocean covers 70% of the Earth’s surface and provides us with a diverse set of ecosystem services that we cannot live without or that significantly improve our quality of life. It is the primary controller of our climate, plays a critical role in providing the air we breathe and the fresh water we drink, supplies us with a large range of exploitable resources (from inorganic resources such as sand and minerals to biotic resources such as seafood), allows us to generate renewable energy, is an important pathway for world transport, an important source of income for tourism, etc. The Organisation for Economic Cooperation and Development (OECD) evaluates the Blue Economy to currently represent 2.5% of the world economic value of goods and services produced, with the potential to further double in size by 2030 (seabed mining, shipping, fishing, tourism, renewable energy systems and aquaculture will intensify). However, the overall consequences of the intensification of human activities on marine ecosystems and their services (such as ocean warming, acidification, deoxygenation, sea level rise, changing distribution and abundance of fish etc.) are still poorly quantified. In addition, on larger geographic and temporal scales, marine data currently appear fragmented, are inhomogeneous, contain data gaps and are difficult to access. This limits our capacity to understand the ocean variability and sustainably manage the ocean and its resources. Consequently, there is a need to develop a framework for more in-depth understanding of marine ecosystems, that links reliable, timely and fit-for-purpose ocean observations to the design and implementation of evidence-based decisions on the management of the ocean. To adequately serve governments, societies, the sustainable Blue Economy and citizens, ocean data need to be collected and delivered in line with the Value Chain of Ocean Information: 1) identification of required data; 2) deployment and maintenance of instruments that collect the data; 3) delivery of data and derived information products; and 4) impact assessment of services to end users. To provide input to the possible future establishment of such a framework, ten innovative EU projects to build user-focused, interdisciplinary, responsive and sustained ocean information systems and increase the sustainability of the Blue Economy, joined forces in a strong cluster to better address key global marine challenges. Under the lead of the EuroSea project, the group translated its common concerns to recommendations and listed these in the joint policy brief ‘Nourishing Blue Economy and Sharing Ocean Knowledge. Ocean Information for Sustainable Management.’. Following up on these recommendations will strengthen the entire Value Chain of Ocean Information and ensure sound sustainable ocean management. In this way, the 10 projects jointly strive to achieve goals set out in the EU Green Deal, the Paris Agreement (United Nations Framework Convention on Climate Change) and the United Nations 2021-2030 Decade of Ocean Science for Sustainable Ocean Development. Toste Tanhua (GEOMAR), EuroSea coordinator: “It was great to collaborate with these other innovative projects and make joint recommendations based on different perspectives and expertise.”

  • Other research product . Other ORP type . 2021
    Open Access
    Authors: 
    Strauss, Jens; Abbott, Benjamin; Hugelius, Gustaf; Schuur, Edward. A. G.; Treat, Claire; Fuchs, Matthias; Schädel, Christina; Ulrich, Mathias; Turetsky, M. R.; Keuschnig, Markus; +3 more
    Publisher: Food and Agriculture Organization of the United Nations
    Country: Germany
    Project: EC | PETA-CARB (338335)

    Permafrost is perennially frozen ground, such as soil, rock, and ice. In permafrost regions, plant and microbial life persists primarily in the near-surface soil that thaws every summer, called the ‘active layer’ (Figure 20). The cold and wet conditions in many permafrost regions limit decomposition of organic matter. In combination with soil mixing processes caused by repeated freezing and thawing, this has led to the accumulation of large stocks of soil organic carbon in the permafrost zone over multi-millennial timescales. As the climate warms, permafrost carbon could be highly vulnerable to climatic warming. Permafrost occurs primarily in high latitudes (e.g. Arctic and Antarctic) and at high elevation (e.g. Tibetan Plateau, Figure 21). The thickness of permafrost varies from less than 1 m (in boreal peatlands) to more than 1 500 m (in Yakutia). The coldest permafrost is found in the Transantarctic Mountains in Antarctica (−36°C) and in northern Canada for the Northern Hemisphere (-15°C; Obu et al., 2019, 2020). In contrast, some of the warmest permafrost occurs in peatlands in areas with mean air temperatures above 0°C. Here permafrost exists because thick peat layers insulate the ground during the summer. Most of the permafrost existing today formed during cold glacials (e.g. before 12 000 years ago) and has persisted through warmer interglacials. Some shallow permafrost (max 30–70m depth) formed during the Holocene (past 5000 years) and some even during the Little Ice Age from 400–150 years ago. There are few extensive regions suitable for row crop agriculture in the permafrost zone. Additionally, in areas where large-scale agriculture has been conducted, ground destabilization has been common. Surface disturbance such as plowing or trampling of vegetation can alter the thermal regime of the soil, potentially triggering surface subsidence or abrupt collapse. This may influence soil hydrology, nutrient cycling, and organic matter storage. These changes often have acute and negative consequences for continued agricultural use of such landscapes. Thus, row-crop agriculture could have a negative impact on permafrost (e.g. Grünzweig et al., 2014). Conversely, animal husbandry is widespread in the permafrost zone, including horses, cattle, and reindeer.

  • Open Access
    Authors: 
    Gaiarin, Sara Pittonet;
    Publisher: Zenodo
    Project: EC | AANChOR (818395), EC | Blue Cloud (862409), EC | iAtlantic (818123), EC | AtlantECO (862923)

    The need for a change in culture (and curricula), stimulating standards adoption via engaging with best practice and exemplary use cases, further connecting ocean-observing data collection efforts and unlocking archives with historical data: the outcomes of the workshop organised by Blue-Cloud on June 3rd engaged experts across the Atlantic in a dialogue to identify needs and challenges of data sharing ‘pole to pole’ and gave some recommendations towards setting up an Atlantic Data space for the ocean

  • Open Access English
    Authors: 
    Bode, A. (Antonio); Olivar, M. Pilar; López-Pérez, Cristina; Hernández-León, Santiago;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Country: Spain
    Project: EC | TRIATLAS (817578)

    The values of natural abundance of stable isotopes were measured in 13 micronekton fish species sampled during the MAFIA cruise (North Atlantic, April 2015). This dataset contains the values obtained for carbon and nitrogen in bulk tissues, and nitrogen values in amino acids. Length data and the number of individuals analysed for each species are also provided. Mesopelagic fishes were collected using a ''Mesopelagos” net (5x7 m mouth opening, 58 m total lenght) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers (Olivar et al., 2017). For C:N and stable isotope analyses, individual fish were eviscerated, freeze-dried and weighted. Aliquots of muscular tissue (or whole individuals for species of small size) were analyzed in an elemental analyzer (bulk tissues, Olivar et al., 2019) or a gas chromatograph (derivatized amino acids, Mompeán et al., 2016) coupled to isotope-ratio mass spectrometers. This research was funded by projects MAFIA (CTM2012-39587-C04), BATHYPELAGIC (CTM2016-78853-R), and QLOCKS (PID2020-115620RB-100) from the Plan Estatal de I+D+I (Spain), projects SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578), from the European Union (Horizon 2020 Research and Innovation Programme), and the support through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).