Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
35 Research products, page 1 of 4

  • European Marine Science
  • Other research products
  • European Commission
  • EU
  • BM
  • English
  • Aurora Universities Network

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Archer-Nicholls, Scott; Dorling, Steve; Reeves, Claire E.; Butler, Tim;
    Project: EC | ASIBIA (616938)

    Tropospheric ozone (O3) concentrations depend on a combination of hemispheric, regional, and local-scale processes. Estimates of how much O3 is produced locally vs. transported from further afield are essential in air quality management and regulatory policies. Here, a tagged-ozone mechanism within the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to quantify the contributions to surface O3 in the UK from anthropogenic nitrogen oxide (NOx) emissions from inside and outside the UK during May–August 2015. The contribution of the different source regions to three regulatory O3 metrics is also examined. It is shown that model simulations predict the concentration and spatial distribution of surface O3 with a domain-wide mean bias of −3.7 ppbv. Anthropogenic NOx emissions from the UK and Europe account for 13 % and 16 %, respectively, of the monthly mean surface O3 in the UK, as the majority (71 %) of O3 originates from the hemispheric background. Hemispheric O3 contributes the most to concentrations in the north and the west of the UK with peaks in May, whereas European and UK contributions are most significant in the east, south-east, and London, i.e. the UK's most populated areas, intensifying towards June and July. Moreover, O3 from European sources is generally transported to the UK rather than produced in situ. It is demonstrated that more stringent emission controls over continental Europe, particularly in western Europe, would be necessary to improve the health-related metric MDA8 O3 above 50 and 60 ppbv. Emission controls over larger areas, such as the Northern Hemisphere, are instead required to lessen the impacts on ecosystems as quantified by the AOT40 metric.

  • Open Access English
    Authors: 
    Bar, Marijke W.; Ullgren, Jenny E.; Thunnell, Robert C.; Wakeham, Stuart G.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.; Sinninghe Damsté, Jaap S.; Schouten, Stefan;
    Project: EC | DUSTTRAFFIC (311152), NWO | TRAFFIC: Transatlantic fl... (2300175166), NWO | Perturbations of System E... (2300181601), EC | DIOLS (339206)

    In this study we analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the long-chain diol index (LDI) temperature proxy. For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the two other lipid-based temperature proxies TEX86 and U37K′. In addition, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In contrast, the LDI in the Cariaco Basin shows larger seasonal variation, as do the TEX86 and U37K′. Here, the LDI underestimates SST during the warmest months, which is possibly due to summer stratification and the habitat depth of the diol producers deepening to around 20–30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the diol index, as an indicator of upwelling conditions, at three sites: in the eastern Atlantic, potentially linked to Guinea Dome upwelling; in the Cariaco Basin, likely caused by seasonal upwelling; and in the Mozambique Channel, where diol index variations may be driven by upwelling from favorable winds and/or eddy migration.

  • Open Access English
    Authors: 
    Fourteau, Kévin; Martinerie, Patricia; Faïn, Xavier; Schaller, Christoph Florian; Tuckwell, Rebecca; Löwe, Henning; Arnaud, Laurent; Magand, Olivier; Thomas, Elizabeth R; Freitag, Johannes; +3 more
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICE&LASERS (291062)

    Parallel measurements performed on the Lock-In core, drilled on the East Antarctic plateau. All data characterize the gas trapping zone of the firn (where atmospheric gases are enclosed in polar ice), as well as the methane record below the close-off of the firn. The datasets include: - High-resolution density (cm scale variability resolved) - High-resolution liquid conductivity - High-resolution methane concentrations - Major ions in the firn ice - Closed porosity data obtained with the two independent methods of pycnometry and tomography.

  • Open Access English
    Authors: 
    Perner, Kerstin; Moros, Matthias; Jansen, Eystein; Kuijpers, Antoon; Troelstra, Simon; Prins, Maarten Arnoud;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICE2ICE (610055)

    Expansion of fresh and sea-ice loaded surface waters from the Arctic Ocean into the sub-polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid- to late Holocene fresh and sea-ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water-mass composition (upper ~200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water-mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid-Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub-polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and awarming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea-ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.

  • Other research product . Collection . 2019
    Open Access English
    Authors: 
    Waelbroeck, Claire; Lougheed, Bryan C; Vázquez Riveiros, Natalia; Missiaen, Lise; Pedro, Joel B; Dokken, Trond; Hajdas, Irka; Wacker, Lukas; Abbott, Peter M; Dumoulin, Jean-Pascal; +53 more
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ACCLIMATE (339108), FCT | UID/Multi/04326/2019 (UID/Multi/04326/2019), EC | ICE2ICE (610055)

    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.

  • Other research product . Other ORP type . 2018
    Open Access English
    Authors: 
    Le Quéré, Corinne; Andres, Robert J.; Boden, Tom A.; Conway, Thomas; Houghton, Richard A.; House, Jo I.; Marland, Gregg; Peters, Glen Philip; van der Werf, Guido R.; Ahlström, Anders; +24 more
    Project: EC | CARBOCHANGE (264879), EC | COMBINE (226520), EC | GEOCARBON (283080)

    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013

  • Open Access English
    Authors: 
    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; +12 more
    Project: EC | GREENCYCLESII (238366), EC | GEOCARBON (283080), EC | CARBOCHANGE (264879), EC | COCOS (212196)

    The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea–air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea–air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea–air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.05 Pg C yr−1, and by the Arctic it is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea–air flux of −0.61 ± 0.06 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.

  • Open Access English
    Authors: 
    Jeansson, E.; Bellerby, R. G. J.; Skjelvan, I.; Frigstad, H.; Ólafsdóttir, S. R.; Olafsson, J.;
    Publisher: Copernicus Publications
    Project: EC | GREENSEAS (265294), EC | CARBOCHANGE (264879), EC | EURO-BASIN (264933)

    This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 ± 0.5 and 0.45 ± 0.09 mol m−2 yr−1, respectively, and the annual air–sea uptake of atmospheric CO2 is 4.4 ± 1.1 mol C m−2 yr−1. The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 ± 1.0 mol C m−2 yr−1. The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season.

  • Open Access English
    Authors: 
    Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.;
    Project: EC | GROOM (284321)

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm−3 day−1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm−3 day−1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm−3 day−1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  • Open Access English
    Authors: 
    Dumousseaud, C.; Achterberg, E. P.; Tyrrell, T.; Charalampopoulou, A.; Schuster, U.; Hartman, M.; Hydes, D. J.;
    Project: EC | EPOCA (211384)

    Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 ± 0.5 °C) winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1) and dissolved inorganic carbon (22 ± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006), led to differences in the dissolved oxygen anomaly and the chlorophyll α-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to −4.8 mmol m−2 d−1) showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
35 Research products, page 1 of 4
  • Open Access English
    Authors: 
    Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Archer-Nicholls, Scott; Dorling, Steve; Reeves, Claire E.; Butler, Tim;
    Project: EC | ASIBIA (616938)

    Tropospheric ozone (O3) concentrations depend on a combination of hemispheric, regional, and local-scale processes. Estimates of how much O3 is produced locally vs. transported from further afield are essential in air quality management and regulatory policies. Here, a tagged-ozone mechanism within the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to quantify the contributions to surface O3 in the UK from anthropogenic nitrogen oxide (NOx) emissions from inside and outside the UK during May–August 2015. The contribution of the different source regions to three regulatory O3 metrics is also examined. It is shown that model simulations predict the concentration and spatial distribution of surface O3 with a domain-wide mean bias of −3.7 ppbv. Anthropogenic NOx emissions from the UK and Europe account for 13 % and 16 %, respectively, of the monthly mean surface O3 in the UK, as the majority (71 %) of O3 originates from the hemispheric background. Hemispheric O3 contributes the most to concentrations in the north and the west of the UK with peaks in May, whereas European and UK contributions are most significant in the east, south-east, and London, i.e. the UK's most populated areas, intensifying towards June and July. Moreover, O3 from European sources is generally transported to the UK rather than produced in situ. It is demonstrated that more stringent emission controls over continental Europe, particularly in western Europe, would be necessary to improve the health-related metric MDA8 O3 above 50 and 60 ppbv. Emission controls over larger areas, such as the Northern Hemisphere, are instead required to lessen the impacts on ecosystems as quantified by the AOT40 metric.

  • Open Access English
    Authors: 
    Bar, Marijke W.; Ullgren, Jenny E.; Thunnell, Robert C.; Wakeham, Stuart G.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.; Sinninghe Damsté, Jaap S.; Schouten, Stefan;
    Project: EC | DUSTTRAFFIC (311152), NWO | TRAFFIC: Transatlantic fl... (2300175166), NWO | Perturbations of System E... (2300181601), EC | DIOLS (339206)

    In this study we analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the long-chain diol index (LDI) temperature proxy. For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the two other lipid-based temperature proxies TEX86 and U37K′. In addition, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In contrast, the LDI in the Cariaco Basin shows larger seasonal variation, as do the TEX86 and U37K′. Here, the LDI underestimates SST during the warmest months, which is possibly due to summer stratification and the habitat depth of the diol producers deepening to around 20–30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the diol index, as an indicator of upwelling conditions, at three sites: in the eastern Atlantic, potentially linked to Guinea Dome upwelling; in the Cariaco Basin, likely caused by seasonal upwelling; and in the Mozambique Channel, where diol index variations may be driven by upwelling from favorable winds and/or eddy migration.

  • Open Access English
    Authors: 
    Fourteau, Kévin; Martinerie, Patricia; Faïn, Xavier; Schaller, Christoph Florian; Tuckwell, Rebecca; Löwe, Henning; Arnaud, Laurent; Magand, Olivier; Thomas, Elizabeth R; Freitag, Johannes; +3 more
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICE&LASERS (291062)

    Parallel measurements performed on the Lock-In core, drilled on the East Antarctic plateau. All data characterize the gas trapping zone of the firn (where atmospheric gases are enclosed in polar ice), as well as the methane record below the close-off of the firn. The datasets include: - High-resolution density (cm scale variability resolved) - High-resolution liquid conductivity - High-resolution methane concentrations - Major ions in the firn ice - Closed porosity data obtained with the two independent methods of pycnometry and tomography.

  • Open Access English
    Authors: 
    Perner, Kerstin; Moros, Matthias; Jansen, Eystein; Kuijpers, Antoon; Troelstra, Simon; Prins, Maarten Arnoud;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ICE2ICE (610055)

    Expansion of fresh and sea-ice loaded surface waters from the Arctic Ocean into the sub-polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid- to late Holocene fresh and sea-ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water-mass composition (upper ~200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water-mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid-Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub-polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and awarming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea-ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.

  • Other research product . Collection . 2019
    Open Access English
    Authors: 
    Waelbroeck, Claire; Lougheed, Bryan C; Vázquez Riveiros, Natalia; Missiaen, Lise; Pedro, Joel B; Dokken, Trond; Hajdas, Irka; Wacker, Lukas; Abbott, Peter M; Dumoulin, Jean-Pascal; +53 more
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ACCLIMATE (339108), FCT | UID/Multi/04326/2019 (UID/Multi/04326/2019), EC | ICE2ICE (610055)

    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.

  • Other research product . Other ORP type . 2018
    Open Access English
    Authors: 
    Le Quéré, Corinne; Andres, Robert J.; Boden, Tom A.; Conway, Thomas; Houghton, Richard A.; House, Jo I.; Marland, Gregg; Peters, Glen Philip; van der Werf, Guido R.; Ahlström, Anders; +24 more
    Project: EC | CARBOCHANGE (264879), EC | COMBINE (226520), EC | GEOCARBON (283080)

    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013

  • Open Access English
    Authors: 
    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; +12 more
    Project: EC | GREENCYCLESII (238366), EC | GEOCARBON (283080), EC | CARBOCHANGE (264879), EC | COCOS (212196)

    The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea–air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea–air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea–air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.05 Pg C yr−1, and by the Arctic it is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea–air flux of −0.61 ± 0.06 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.

  • Open Access English
    Authors: 
    Jeansson, E.; Bellerby, R. G. J.; Skjelvan, I.; Frigstad, H.; Ólafsdóttir, S. R.; Olafsson, J.;
    Publisher: Copernicus Publications
    Project: EC | GREENSEAS (265294), EC | CARBOCHANGE (264879), EC | EURO-BASIN (264933)

    This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 ± 0.5 and 0.45 ± 0.09 mol m−2 yr−1, respectively, and the annual air–sea uptake of atmospheric CO2 is 4.4 ± 1.1 mol C m−2 yr−1. The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 ± 1.0 mol C m−2 yr−1. The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season.

  • Open Access English
    Authors: 
    Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.;
    Project: EC | GROOM (284321)

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm−3 day−1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm−3 day−1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm−3 day−1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  • Open Access English
    Authors: 
    Dumousseaud, C.; Achterberg, E. P.; Tyrrell, T.; Charalampopoulou, A.; Schuster, U.; Hartman, M.; Hydes, D. J.;
    Project: EC | EPOCA (211384)

    Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 ± 0.5 °C) winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1) and dissolved inorganic carbon (22 ± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006), led to differences in the dissolved oxygen anomaly and the chlorophyll α-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to −4.8 mmol m−2 d−1) showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.