Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1

  • European Marine Science
  • Other research products
  • European Commission
  • EC|FP7
  • IT
  • RO
  • SDSN - Greece

Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Vries, Joost; Monteiro, Fanny; Wheeler, Glen; Poulton, Alex; Godrijan, Jelena; Cerino, Federica; Malinverno, Elisa; Langer, Gerald; Brownlee, Colin;
    Project: UKRI | GW4+ - a consortium of ex... (NE/L002434/1), UKRI | NSFGEO-NERC An unexpected... (NE/N011708/1), MZOS | Mechanism of long-term ch... (098-0982705-2731), EC | MEDSEA (265103), EC | SEACELLS (670390)

    Coccolithophores are globally important marine calcifying phytoplankton that utilize a haplo-diplontic life cycle. The haplo-diplontic life cycle allows coccolithophores to divide in both life cycle phases and potentially expands coccolithophore niche volume. Research has, however, to date largely overlooked the life cycle of coccolithophores and has instead focused on the diploid life cycle phase of coccolithophores. Through the synthesis and analysis of global scanning electron microscopy (SEM) coccolithophore abundance data (n=2534), we find that calcified haploid coccolithophores generally constitute a minor component of the total coccolithophore abundance (≈ 2 %–15 % depending on season). However, using case studies in the Atlantic Ocean and Mediterranean Sea, we show that, depending on environmental conditions, calcifying haploid coccolithophores can be significant contributors to the coccolithophore standing stock (up to ≈30 %). Furthermore, using hypervolumes to quantify the niche of coccolithophores, we illustrate that the haploid and diploid life cycle phases inhabit contrasting niches and that on average this allows coccolithophores to expand their niche by ≈18.8 %, with a range of 3 %–76 % for individual species. Our results highlight that future coccolithophore research should consider both life cycle stages, as omission of the haploid life cycle phase in current research limits our understanding of coccolithophore ecology. Our results furthermore suggest a different response to nutrient limitation and stratification, which may be of relevance for further climate scenarios. Our compilation highlights the spatial and temporal sparsity of SEM measurements and the need for new molecular techniques to identify uncalcified haploid coccolithophores. Our work also emphasizes the need for further work on the carbonate chemistry niche of the coccolithophore life cycle.

  • Other research product . Other ORP type . 2020
    English
    Authors: 
    Penna, Pierluigi; Belardinelli, Andrea; Croci, Camilla Sofia; Domenichetti, Filippo; Martinelli, Michela;
    Country: Italy
    Project: EC | JERICO-NEXT (654410), EC | JERICO (262584), EC | NEXOS (614102)

    From 2003 to 2013, the Ancona section of CNR-IRBIM (formerly part of CNR-Institute of Marine Science) runned the "Fishery Observing System" (FOS) program aimed at using Italian fishing vessels as Vessels Of Opportunity (VOOs) for the collection of scientifically useful datasets (Falco et al. 2007). Some commercial fishing vessels, targetting small pelagic species in the northern and central Adriatic Sea, were equipped with an integrated system for the collection of information on catches, position of the fishing operation, depth and water temperature during the haul, producing a great amount of data that demonstrated to be helpful both for oceanographic and fishery biology purposes (Carpi et al. 2015; Aydo?du et a. 2016; Sparnocchia et al. 2016; Lucchetti et al. 2018). In 2012, thanks to the participation to some national and international projects (e.g. SSD-Pesca, EU-FP7 JERICO etc.), CNR started the development of a new modular "Fishery & Oceanography Observing System" (FOOS; Patti et al. 2013). New sensors for oceanographic and meteorological data allow nowadays the FOOS to collect more parameters, with higher accuracy and to send them directly to a data center in near real time (Martinelli et al. 2016; Sparnocchia et al. 2017). Furthermore, the FOOS is a multifunction system able to collect various kind of data from the fishing operations and also to send back to the fishermen useful information (e.g. weather and sea forecasts, etc.) through an electronic logbook with an ad hoc software embedded. The new FOOS installed on various kind of fishing vessels targetting different resources, allowed a spatial extension of the monitored areas in the Mediterranean Sea (Patti et al. 2013). CNR-IRBIM implemented the "AdriFOOS" observational system, by installing the FOOS on some commercial fishing boats operating in the Adriatic Sea. Since then the datacenter based in Ancona receives daily data sets of environmental parameters collected along the water column and close to the sea bottom (eg. temperature, salinity, etc.), together with GPS haul tracks, catch amounts per haul, target species sizes and weather information. Some temperature and salinity measurements acquired by the FOOS in the Adriatic Sea from January 2014 to March 2015 were published within the JERICO project and some oxygen and fluorescence profiles obtained in 2017 within the NEXOS project. The dataset here presented contains 14803 depth/temperature profiles collected by 10 vessels of the AdriFOOS fleet in the period 2012-2020. All the profiles were subjected to quality control.Data are flagged according the L20 (SEADATANET MEASURAND QUALIFIER FLAGS).

  • Open Access English
    Authors: 
    Friedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; +29 more
    Project: EC | HYPOX (226213)

    In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.

  • Other research product . Other ORP type . 2012
    Restricted English
    Authors: 
    Martinelli M.; Moroni D.; Salvetti O.;
    Country: Italy
    Project: EC | ARGOMARINE (234096)

    Based on the idea that contribution of volunteers might play a fundamental role in monitoring and protecting the environment, CNR-ISTI designed and developed a mobile application in order to allow people to timely report oil spills. By downloading the FREE app "ARGO Sentinel" volunteers are helping to monitor the health of our seas and the scientific research by demonstrating that the use of this new technology could be really important to combat pollution. Moreover this experiment suggests that this kind of technology can be applied in many other fields. Whoever at sea sights pollution by oil or hydrocarbons is now able to immediately report the event to the Laboratory of Signals and Images SI-LAB (si.isti.cnr.it) of the Institute of Science and Information Technologies of the Italian National Research Council (CNR-ISTI) in Pisa, allowing the realization of a detailed map of the health of our seas. This information is recorded in the Marine Information System (MIS) produced by CNR, able to collect geotagged data relating to critical and health issues of the sea from various sources (satellites, optical sensors, electronic noses, autonomous underwater vehicles systems) and integrate and generate predictive models to assist the authorities in the management of emergencies at sea. The application, distributed in Italian, English and Greek languages, for smartphones equipped of GPS is an easy to use tool designed for anyone, that for any reason, sail the seas. It allows you to send reports of suspected spills to the CNR specifying the precise point, severity and a description of the spill.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1
  • Open Access English
    Authors: 
    Vries, Joost; Monteiro, Fanny; Wheeler, Glen; Poulton, Alex; Godrijan, Jelena; Cerino, Federica; Malinverno, Elisa; Langer, Gerald; Brownlee, Colin;
    Project: UKRI | GW4+ - a consortium of ex... (NE/L002434/1), UKRI | NSFGEO-NERC An unexpected... (NE/N011708/1), MZOS | Mechanism of long-term ch... (098-0982705-2731), EC | MEDSEA (265103), EC | SEACELLS (670390)

    Coccolithophores are globally important marine calcifying phytoplankton that utilize a haplo-diplontic life cycle. The haplo-diplontic life cycle allows coccolithophores to divide in both life cycle phases and potentially expands coccolithophore niche volume. Research has, however, to date largely overlooked the life cycle of coccolithophores and has instead focused on the diploid life cycle phase of coccolithophores. Through the synthesis and analysis of global scanning electron microscopy (SEM) coccolithophore abundance data (n=2534), we find that calcified haploid coccolithophores generally constitute a minor component of the total coccolithophore abundance (≈ 2 %–15 % depending on season). However, using case studies in the Atlantic Ocean and Mediterranean Sea, we show that, depending on environmental conditions, calcifying haploid coccolithophores can be significant contributors to the coccolithophore standing stock (up to ≈30 %). Furthermore, using hypervolumes to quantify the niche of coccolithophores, we illustrate that the haploid and diploid life cycle phases inhabit contrasting niches and that on average this allows coccolithophores to expand their niche by ≈18.8 %, with a range of 3 %–76 % for individual species. Our results highlight that future coccolithophore research should consider both life cycle stages, as omission of the haploid life cycle phase in current research limits our understanding of coccolithophore ecology. Our results furthermore suggest a different response to nutrient limitation and stratification, which may be of relevance for further climate scenarios. Our compilation highlights the spatial and temporal sparsity of SEM measurements and the need for new molecular techniques to identify uncalcified haploid coccolithophores. Our work also emphasizes the need for further work on the carbonate chemistry niche of the coccolithophore life cycle.

  • Other research product . Other ORP type . 2020
    English
    Authors: 
    Penna, Pierluigi; Belardinelli, Andrea; Croci, Camilla Sofia; Domenichetti, Filippo; Martinelli, Michela;
    Country: Italy
    Project: EC | JERICO-NEXT (654410), EC | JERICO (262584), EC | NEXOS (614102)

    From 2003 to 2013, the Ancona section of CNR-IRBIM (formerly part of CNR-Institute of Marine Science) runned the "Fishery Observing System" (FOS) program aimed at using Italian fishing vessels as Vessels Of Opportunity (VOOs) for the collection of scientifically useful datasets (Falco et al. 2007). Some commercial fishing vessels, targetting small pelagic species in the northern and central Adriatic Sea, were equipped with an integrated system for the collection of information on catches, position of the fishing operation, depth and water temperature during the haul, producing a great amount of data that demonstrated to be helpful both for oceanographic and fishery biology purposes (Carpi et al. 2015; Aydo?du et a. 2016; Sparnocchia et al. 2016; Lucchetti et al. 2018). In 2012, thanks to the participation to some national and international projects (e.g. SSD-Pesca, EU-FP7 JERICO etc.), CNR started the development of a new modular "Fishery & Oceanography Observing System" (FOOS; Patti et al. 2013). New sensors for oceanographic and meteorological data allow nowadays the FOOS to collect more parameters, with higher accuracy and to send them directly to a data center in near real time (Martinelli et al. 2016; Sparnocchia et al. 2017). Furthermore, the FOOS is a multifunction system able to collect various kind of data from the fishing operations and also to send back to the fishermen useful information (e.g. weather and sea forecasts, etc.) through an electronic logbook with an ad hoc software embedded. The new FOOS installed on various kind of fishing vessels targetting different resources, allowed a spatial extension of the monitored areas in the Mediterranean Sea (Patti et al. 2013). CNR-IRBIM implemented the "AdriFOOS" observational system, by installing the FOOS on some commercial fishing boats operating in the Adriatic Sea. Since then the datacenter based in Ancona receives daily data sets of environmental parameters collected along the water column and close to the sea bottom (eg. temperature, salinity, etc.), together with GPS haul tracks, catch amounts per haul, target species sizes and weather information. Some temperature and salinity measurements acquired by the FOOS in the Adriatic Sea from January 2014 to March 2015 were published within the JERICO project and some oxygen and fluorescence profiles obtained in 2017 within the NEXOS project. The dataset here presented contains 14803 depth/temperature profiles collected by 10 vessels of the AdriFOOS fleet in the period 2012-2020. All the profiles were subjected to quality control.Data are flagged according the L20 (SEADATANET MEASURAND QUALIFIER FLAGS).

  • Open Access English
    Authors: 
    Friedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; +29 more
    Project: EC | HYPOX (226213)

    In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.

  • Other research product . Other ORP type . 2012
    Restricted English
    Authors: 
    Martinelli M.; Moroni D.; Salvetti O.;
    Country: Italy
    Project: EC | ARGOMARINE (234096)

    Based on the idea that contribution of volunteers might play a fundamental role in monitoring and protecting the environment, CNR-ISTI designed and developed a mobile application in order to allow people to timely report oil spills. By downloading the FREE app "ARGO Sentinel" volunteers are helping to monitor the health of our seas and the scientific research by demonstrating that the use of this new technology could be really important to combat pollution. Moreover this experiment suggests that this kind of technology can be applied in many other fields. Whoever at sea sights pollution by oil or hydrocarbons is now able to immediately report the event to the Laboratory of Signals and Images SI-LAB (si.isti.cnr.it) of the Institute of Science and Information Technologies of the Italian National Research Council (CNR-ISTI) in Pisa, allowing the realization of a detailed map of the health of our seas. This information is recorded in the Marine Information System (MIS) produced by CNR, able to collect geotagged data relating to critical and health issues of the sea from various sources (satellites, optical sensors, electronic noses, autonomous underwater vehicles systems) and integrate and generate predictive models to assist the authorities in the management of emergencies at sea. The application, distributed in Italian, English and Greek languages, for smartphones equipped of GPS is an easy to use tool designed for anyone, that for any reason, sail the seas. It allows you to send reports of suspected spills to the CNR specifying the precise point, severity and a description of the spill.