- home
- Advanced Search
Loading
apps Other research productkeyboard_double_arrow_right Collection 2023 EnglishPANGAEA NSF | Student Reasoning Pattern..., EC | WACSWAIN, SNSF | Climate and Environmental...NSF| Student Reasoning Patterns in Next Generation Science Standards Assessment ,EC| WACSWAIN ,SNSF| Climate and Environmental Physics: Pleistocene Earth System Evolution (pleistoCEP)Wolff, Eric William; Mulvaney, Robert; Grieman, Mackenzie M; Hoffmann, Helene; Humby, Jack;We present an age model for the 651 m deep Skytrain Ice Rise ice core (79°44.5'S, 78°32.7'W). The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps Event, and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108 ka (~605 m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117-126 ka (617-628 m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631 m appears to be of age >150 ka.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::99c72e9663017ebf1e72865d1a0834c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::99c72e9663017ebf1e72865d1a0834c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA SNSF | Daily Weather Reconstruct..., EC | PALAEO-RASNSF| Daily Weather Reconstructions to Study Decadal Climate Swings ,EC| PALAEO-RAAuthors: Lundstad, Elin; Brugnara, Yuri; Brönnimann, Stefan;Lundstad, Elin; Brugnara, Yuri; Brönnimann, Stefan;There is a growing need for past weather and climate data to support science and decision-making. This paper describes the compilation and the construction of a global multivariable (air temperature, pressure, precipitation sum, number of precipitation days) monthly instrumental climate database that encompasses a substantial body of the known early instrumental time series. The dataset contains series compiled from existing databases that start before 1890 (though continuing to the present) as well as a large amount of newly rescued data. All series underwent a quality control procedure and subdaily series were processed to monthly mean values. An inventory was compiled, and the collection was deduplicated based on coordinates and mutual correlations. The data are provided in a common format accompanied by the inventory. The collection totals 12452 meteorological records in 118 countries. The data has been merged from 18250 original data files. The data can be used for climate reconstructions and analyses. It is the most comprehensive global monthly climate data set for the preindustrial period.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5dbfc4cf6159fdd1151a163c7ad821a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5dbfc4cf6159fdd1151a163c7ad821a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Lecture 2021 Switzerland EnglishJETZON - investigating the Ocean's Twilight Zone EC | AtlantECOEC| AtlantECOAuthors: Benedetti, Fabio;Benedetti, Fabio;handle: 20.500.11850/528047
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::e3a21dd97c508705bc782c4429cfc95e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::e3a21dd97c508705bc782c4429cfc95e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2021 English EC | ICE2ICEEC| ICE2ICEPlach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Lecture 2021 Switzerland EC | AtlantECOEC| AtlantECOVogt, Meike; Benedetti, Fabio; Righetti, Damiano; O'Brien, Colleen; Krebs, Luana; Hofmann Elizondo, Urs; Eriksson, Dominic;handle: 20.500.11850/528073
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::70ecd7dd003c63f34d3725bf405c42d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::70ecd7dd003c63f34d3725bf405c42d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2021 EnglishPANGAEA EC | WATERUNDERTHEICE, SNSF | Beteiligung der Schweiz a..., SNSF | Climate and Environmental... +7 projectsEC| WATERUNDERTHEICE ,SNSF| Beteiligung der Schweiz an einem Bohrprojekt auf dem nördlichen grönländischen Eisschildes: North GRIP ,SNSF| Climate and Environmental Physics ,SNSF| Schweizerische Beteiligung an der Eis-Tiefbohrung in Nordwest Grönland (NEEM) ,SNSF| iCEP - Climate and Environmental Physics: Innovation in ice core science ,EC| PAST4FUTURE ,SNSF| Schweizerische Beteiligung an der Eis-Tiefbohrung in Nordwest Grönland NEEM (Teil 2) ,SNSF| Beteiligung der Schweiz an einem Bohrprojekt auf dem nördlichen grönländischen Eisschildes: North GRIP ,SNSF| Next Generation Continuous Flow Analysis System for Ice-Core Paleoclimate Research ,SNSF| Climate and Environmental PhysicsErhardt, Tobias; Bigler, Matthias; Federer, Urs; Gfeller, Gideon; Leuenberger, Daiana; Stowasser, Olivia; Röthlisberger, Regine; Schüpbach, Simon; Ruth, Urs; Twarloh, Birthe; Wegner, Anna; Goto-Azuma, Kumiko; Takayuki, Kuramoto; Kjær, Helle Astrid; Vallelonga, Paul T; Siggaard-Andersen, Marie-Louise; Hansson, Margareta E; Benton, Ailsa K; Fleet, Louise G; Mulvaney, Rob; Thomas, Elizabeth R; Abram, Nerilie J; Stocker, Thomas F; Fischer, Hubertus;High resolution aerosol data from Greenland NGRIP and NEEM ice cores. All data was measured using continuous flow analysis with the Bern CFA system during the respective field campaigns. A detailed description of the measurement procedures can be found in Röthlisberger et al. (2000) and Kaufmann et al. (2008) and are summarised in the accompanying ESSD publication (Erhardt et al 2022). Data is provided at 1mm depth resolution and 10yr averages on the GICC05 age scale of the respective core (Andersen et al, 2006; Rasmussen et al., 2006; Svensson et al., 2008; Wolff et al., 2010; Rasmussen et al., 2013). For a detailed description of the uncertainties in the presented data refer to the accompanying ESSD publication. If you use this data please cite Röthlisberger et al. (2000), Kaufmann et al. (2008) and Erhardt et al. (2022).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7cc2a955f69e3d06800584ab4581bc2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7cc2a955f69e3d06800584ab4581bc2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2021 EnglishPANGAEA SNSF | From Cloud to Ground: Sno..., EC | ARICESNSF| From Cloud to Ground: Snow Accumulation in Extreme Environments ,EC| ARICEMacfarlane, Amy R; Schneebeli, Martin; Dadic, Ruzica; Wagner, David N; Arndt, Stefanie; Clemens-Sewall, David; Hämmerle, Stefan; Hannula, Henna-Reetta; Jaggi, Matthias; Kolabutin, Nikolai; Krampe, Daniela; Lehning, Michael; Matero, Ilkka; Nicolaus, Marcel; Oggier, Marc; Pirazzini, Roberta; Polashenski, Chris; Raphael, Ian; Regnery, Julia; Shimanchuck, Egor; Smith, Madison M; Tavri, Aikaterini;This dataset captures the yearlong evolution of physical properties of the snow cover over Arctic sea ice during the MOSAiC expedition (October 2019-September 2020). It also includes the surface scattering layer that is typical of the melting summer sea ice surface. This dataset is specifically for measurements that were logged as “snowpit events” during MOSAiC. The snowpit events were either detailed point-measurements of vertical snow profiles or horizontally repeated transects, measured at selected locations in designated undisturbed areas. One snowpit event corresponds to one site visit. The snowpits are often co-located with measurements from other MOSAiC teams to improve our understanding of how snow cover affects and interacts with the atmosphere-sea ice-ocean-ecology system. Most snowpits were measured at least bi-weekly to capture the temporal evolution of physical properties of snow. Some snowpits were one-off events to capture interesting and unplanned-for surface conditions. This dataset includes 576 snowpit events, and describes the snow conditions during the entire expedition. Please direct inquiries to; David Wagner (PS122/1), Martin Schneebeli (PS122/2), Amy Macfarlane (PS122/3 and PS122/4), Ruzica Dadic (PS122/5).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::55270ff25f5f83f001213ad38f9aeb76&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::55270ff25f5f83f001213ad38f9aeb76&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2020 English EC | STRATOCLIM, UKRI | Reconciling Volcanic Forc..., UKRI | The North Atlantic Climat... +2 projectsEC| STRATOCLIM ,UKRI| Reconciling Volcanic Forcing and Climate Records throughout the Last Millennium (Vol-Clim) ,UKRI| The North Atlantic Climate System Integrated Study ,SNSF| SPARC International Project office ,NSF| Decadal Prediction Following Volcanic EruptionsClyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; Niemeier, Ulrike; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Schmidt, Anja; Stenke, Andrea; Sukhodolov, Timofei; Timmreck, Claudia; Toohey, Matthew; Tummon, Fiona; Zanchettin, Davide; Zhu, Yunqian; Toon, Owen B.;As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2020 English NWO | Response of the Iron Biog..., EC | PHOXYNWO| Response of the Iron Biogeochemical Cycle on Continental Shelves to Seawater Deoxygenation ,EC| PHOXYAuthors: Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; +4 AuthorsHelmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm archipelago. Bottom water concentrations of oxygen (O2) and P are inversely correlated. This is attributed to the seasonal release of P from iron-oxide-bound (Fe-oxide-bound) P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water and its high upward flux towards the sediment surface (∼4 to 8 mmol m−2 d−1), linked to prior deposition of organic-rich sediments in a low-O2 setting (“legacy of hypoxia”), hinder the formation of a larger Fe-oxide-bound P pool in winter. This is most pronounced at sites where water column mixing is naturally relatively low and where low bottom water O2 concentrations prevail in summer. Burial rates of P are high at all sites (0.03–0.3 mol m−2 yr−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (∼30 to 50 µmol g−1). Sedimentary P is dominated by Fe-bound P and organic P at the sediment surface and by organic P, authigenic Ca-P and detrital P at depth. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink switching of organic or Fe-oxide-bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1) with rates decreasing seaward from the inner to outer archipelago. Our results explain how sediments in this eutrophic coastal system can remove P through burial at a relatively high rate, regardless of whether the bottom waters are oxic or (frequently) hypoxic. Our results suggest that benthic N processes undergo annual cycles of removal and recycling in response to hypoxic conditions. Further nutrient load reductions are expected to contribute to the recovery of the eutrophic Stockholm archipelago from hypoxia. Based on the dominant pathways of P and N removal identified in this study, it is expected that the sediments will continue to remove part of the P and N loads.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::1d5dffc6707ff520737e2932618c15ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::1d5dffc6707ff520737e2932618c15ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2020 EnglishPANGAEA SNSF | iCEP - Climate and Enviro..., SNSF | Climate and Environmental..., SNSF | Beyond EPICA: Oldest Ice ... +5 projectsSNSF| iCEP - Climate and Environmental Physics: Innovation in ice core science ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,SNSF| Beyond EPICA: Oldest Ice Core - The Swiss Contribution (BE-OIC) ,EC| TiPES ,SNSF| Climate and Environmental Physics: Pleistocene Earth System Evolution (pleistoCEP) ,UKRI| A reference time scale for the study of Pleistocene orbital and millennial-scale climate variability: IODP Site U1385 ("Shackleton site") ,EC| ICE&LASERS ,SNSF| Climate and Environmental PhysicsNehrbass-Ahles, Christoph; Shin, Jinhwa; Schmitt, Jochen; Bereiter, Bernhard; Joos, Fortunat; Schilt, Adrian; Schmidely, Loïc; Silva, Lucas; Teste, Grégory; Grilli, Roberto; Chappellaz, Jérôme A; Hodell, David A; Fischer, Hubertus; Stocker, Thomas;High-resolution atmospheric carbon dioxide (CO2) and methane (CH4) records derived from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core covering Marine Isotope Stage (MIS) 9e - 12a (~330 - 450 ka BP). The majority of the CO2 data were measured at an average temporal resolution of ~300 years using a novel dry-extraction device called the Centrifugal Ice Microtome (CIM) employed at Climate and Environmental Physics (CEP), Physics Institute, University of Bern, Switzerland. Additional 33 data points were measured at the Institut des Géosciences de l'Environnement (IGE), Univ. Grenoble Alpes, France using the Ball Mill dry-extraction system. The CH4 data were measured at both CEP and IGE, improving the temporal resolution of existing data previously published by the same laboratories to ~350 years on average. These ice core records are complemented by high-resolution planktic and benthic stable isotope (δ18O and δ13C) records from the International Ocean Discovery Program (IODP) Site U1385 located on the Iberian Margin off the coast of Portugal (Shackleton Site) covering MIS 9e - 11c (~330 - 410 ka BP). All marine sediment data were measured at an average temporal resolution of ~150 years at the Godwin Laboratory of Palaeoclimate Research, University of Cambridge, UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::b1e52760f446fd93483abeb87d243827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::b1e52760f446fd93483abeb87d243827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Collection 2023 EnglishPANGAEA NSF | Student Reasoning Pattern..., EC | WACSWAIN, SNSF | Climate and Environmental...NSF| Student Reasoning Patterns in Next Generation Science Standards Assessment ,EC| WACSWAIN ,SNSF| Climate and Environmental Physics: Pleistocene Earth System Evolution (pleistoCEP)Wolff, Eric William; Mulvaney, Robert; Grieman, Mackenzie M; Hoffmann, Helene; Humby, Jack;We present an age model for the 651 m deep Skytrain Ice Rise ice core (79°44.5'S, 78°32.7'W). The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps Event, and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108 ka (~605 m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117-126 ka (617-628 m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631 m appears to be of age >150 ka.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::99c72e9663017ebf1e72865d1a0834c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::99c72e9663017ebf1e72865d1a0834c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA SNSF | Daily Weather Reconstruct..., EC | PALAEO-RASNSF| Daily Weather Reconstructions to Study Decadal Climate Swings ,EC| PALAEO-RAAuthors: Lundstad, Elin; Brugnara, Yuri; Brönnimann, Stefan;Lundstad, Elin; Brugnara, Yuri; Brönnimann, Stefan;There is a growing need for past weather and climate data to support science and decision-making. This paper describes the compilation and the construction of a global multivariable (air temperature, pressure, precipitation sum, number of precipitation days) monthly instrumental climate database that encompasses a substantial body of the known early instrumental time series. The dataset contains series compiled from existing databases that start before 1890 (though continuing to the present) as well as a large amount of newly rescued data. All series underwent a quality control procedure and subdaily series were processed to monthly mean values. An inventory was compiled, and the collection was deduplicated based on coordinates and mutual correlations. The data are provided in a common format accompanied by the inventory. The collection totals 12452 meteorological records in 118 countries. The data has been merged from 18250 original data files. The data can be used for climate reconstructions and analyses. It is the most comprehensive global monthly climate data set for the preindustrial period.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5dbfc4cf6159fdd1151a163c7ad821a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5dbfc4cf6159fdd1151a163c7ad821a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Lecture 2021 Switzerland EnglishJETZON - investigating the Ocean's Twilight Zone EC | AtlantECOEC| AtlantECOAuthors: Benedetti, Fabio;Benedetti, Fabio;handle: 20.500.11850/528047
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::e3a21dd97c508705bc782c4429cfc95e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::e3a21dd97c508705bc782c4429cfc95e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2021 English EC | ICE2ICEEC| ICE2ICEPlach, Andreas; Vinther, Bo M.; Nisancioglu, Kerim H.; Vudayagiri, Sindhu; Blunier, Thomas;This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::59faadcd78fce201225dd13f290c56c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Lecture 2021 Switzerland EC | AtlantECOEC| AtlantECOVogt, Meike; Benedetti, Fabio; Righetti, Damiano; O'Brien, Colleen; Krebs, Luana; Hofmann Elizondo, Urs; Eriksson, Dominic;handle: 20.500.11850/528073
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::70ecd7dd003c63f34d3725bf405c42d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______150::70ecd7dd003c63f34d3725bf405c42d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2021 EnglishPANGAEA EC | WATERUNDERTHEICE, SNSF | Beteiligung der Schweiz a..., SNSF | Climate and Environmental... +7 projectsEC| WATERUNDERTHEICE ,SNSF| Beteiligung der Schweiz an einem Bohrprojekt auf dem nördlichen grönländischen Eisschildes: North GRIP ,SNSF| Climate and Environmental Physics ,SNSF| Schweizerische Beteiligung an der Eis-Tiefbohrung in Nordwest Grönland (NEEM) ,SNSF| iCEP - Climate and Environmental Physics: Innovation in ice core science ,EC| PAST4FUTURE ,SNSF| Schweizerische Beteiligung an der Eis-Tiefbohrung in Nordwest Grönland NEEM (Teil 2) ,SNSF| Beteiligung der Schweiz an einem Bohrprojekt auf dem nördlichen grönländischen Eisschildes: North GRIP ,SNSF| Next Generation Continuous Flow Analysis System for Ice-Core Paleoclimate Research ,SNSF| Climate and Environmental PhysicsErhardt, Tobias; Bigler, Matthias; Federer, Urs; Gfeller, Gideon; Leuenberger, Daiana; Stowasser, Olivia; Röthlisberger, Regine; Schüpbach, Simon; Ruth, Urs; Twarloh, Birthe; Wegner, Anna; Goto-Azuma, Kumiko; Takayuki, Kuramoto; Kjær, Helle Astrid; Vallelonga, Paul T; Siggaard-Andersen, Marie-Louise; Hansson, Margareta E; Benton, Ailsa K; Fleet, Louise G; Mulvaney, Rob; Thomas, Elizabeth R; Abram, Nerilie J; Stocker, Thomas F; Fischer, Hubertus;High resolution aerosol data from Greenland NGRIP and NEEM ice cores. All data was measured using continuous flow analysis with the Bern CFA system during the respective field campaigns. A detailed description of the measurement procedures can be found in Röthlisberger et al. (2000) and Kaufmann et al. (2008) and are summarised in the accompanying ESSD publication (Erhardt et al 2022). Data is provided at 1mm depth resolution and 10yr averages on the GICC05 age scale of the respective core (Andersen et al, 2006; Rasmussen et al., 2006; Svensson et al., 2008; Wolff et al., 2010; Rasmussen et al., 2013). For a detailed description of the uncertainties in the presented data refer to the accompanying ESSD publication. If you use this data please cite Röthlisberger et al. (2000), Kaufmann et al. (2008) and Erhardt et al. (2022).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7cc2a955f69e3d06800584ab4581bc2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7cc2a955f69e3d06800584ab4581bc2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2021 EnglishPANGAEA SNSF | From Cloud to Ground: Sno..., EC | ARICESNSF| From Cloud to Ground: Snow Accumulation in Extreme Environments ,EC| ARICEMacfarlane, Amy R; Schneebeli, Martin; Dadic, Ruzica; Wagner, David N; Arndt, Stefanie; Clemens-Sewall, David; Hämmerle, Stefan; Hannula, Henna-Reetta; Jaggi, Matthias; Kolabutin, Nikolai; Krampe, Daniela; Lehning, Michael; Matero, Ilkka; Nicolaus, Marcel; Oggier, Marc; Pirazzini, Roberta; Polashenski, Chris; Raphael, Ian; Regnery, Julia; Shimanchuck, Egor; Smith, Madison M; Tavri, Aikaterini;This dataset captures the yearlong evolution of physical properties of the snow cover over Arctic sea ice during the MOSAiC expedition (October 2019-September 2020). It also includes the surface scattering layer that is typical of the melting summer sea ice surface. This dataset is specifically for measurements that were logged as “snowpit events” during MOSAiC. The snowpit events were either detailed point-measurements of vertical snow profiles or horizontally repeated transects, measured at selected locations in designated undisturbed areas. One snowpit event corresponds to one site visit. The snowpits are often co-located with measurements from other MOSAiC teams to improve our understanding of how snow cover affects and interacts with the atmosphere-sea ice-ocean-ecology system. Most snowpits were measured at least bi-weekly to capture the temporal evolution of physical properties of snow. Some snowpits were one-off events to capture interesting and unplanned-for surface conditions. This dataset includes 576 snowpit events, and describes the snow conditions during the entire expedition. Please direct inquiries to; David Wagner (PS122/1), Martin Schneebeli (PS122/2), Amy Macfarlane (PS122/3 and PS122/4), Ruzica Dadic (PS122/5).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::55270ff25f5f83f001213ad38f9aeb76&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::55270ff25f5f83f001213ad38f9aeb76&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2020 English EC | STRATOCLIM, UKRI | Reconciling Volcanic Forc..., UKRI | The North Atlantic Climat... +2 projectsEC| STRATOCLIM ,UKRI| Reconciling Volcanic Forcing and Climate Records throughout the Last Millennium (Vol-Clim) ,UKRI| The North Atlantic Climate System Integrated Study ,SNSF| SPARC International Project office ,NSF| Decadal Prediction Following Volcanic EruptionsClyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; Niemeier, Ulrike; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Schmidt, Anja; Stenke, Andrea; Sukhodolov, Timofei; Timmreck, Claudia; Toohey, Matthew; Tummon, Fiona; Zanchettin, Davide; Zhu, Yunqian; Toon, Owen B.;As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2020 English NWO | Response of the Iron Biog..., EC | PHOXYNWO| Response of the Iron Biogeochemical Cycle on Continental Shelves to Seawater Deoxygenation ,EC| PHOXYAuthors: Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; +4 AuthorsHelmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm archipelago. Bottom water concentrations of oxygen (O2) and P are inversely correlated. This is attributed to the seasonal release of P from iron-oxide-bound (Fe-oxide-bound) P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water and its high upward flux towards the sediment surface (∼4 to 8 mmol m−2 d−1), linked to prior deposition of organic-rich sediments in a low-O2 setting (“legacy of hypoxia”), hinder the formation of a larger Fe-oxide-bound P pool in winter. This is most pronounced at sites where water column mixing is naturally relatively low and where low bottom water O2 concentrations prevail in summer. Burial rates of P are high at all sites (0.03–0.3 mol m−2 yr−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (∼30 to 50 µmol g−1). Sedimentary P is dominated by Fe-bound P and organic P at the sediment surface and by organic P, authigenic Ca-P and detrital P at depth. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink switching of organic or Fe-oxide-bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1) with rates decreasing seaward from the inner to outer archipelago. Our results explain how sediments in this eutrophic coastal system can remove P through burial at a relatively high rate, regardless of whether the bottom waters are oxic or (frequently) hypoxic. Our results suggest that benthic N processes undergo annual cycles of removal and recycling in response to hypoxic conditions. Further nutrient load reductions are expected to contribute to the recovery of the eutrophic Stockholm archipelago from hypoxia. Based on the dominant pathways of P and N removal identified in this study, it is expected that the sediments will continue to remove part of the P and N loads.