- home
- Advanced Search
2 Research products, page 1 of 1
Loading
- Other research product . 2018Open Access EnglishAuthors:Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; +4 moreAhlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; Citterio, M.; As, D.; Fausto, R. S.; Hubbard, A.;Project: EC | ICE2SEA (226375), NSF | RAPID: Recovery of Data f... (1061864), UKRI | Investigating the Dynamic... (NE/G005796/1)
We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.
- Other research product . 2018Open Access EnglishAuthors:Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; Malfatti, Francesca;Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; Malfatti, Francesca;
handle: 11329/1341
Project: UKRI | Development and applicati... (NE/N006496/1), EC | JERICO-NEXT (654410), EC | AtlantOS (633211), EC | EMSO-Link (731036)In the field of ocean observing, the term of “observatory” is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or “gears” (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions. Refereed 14.A Manual (incl. handbook, guide, cookbook etc) 2018-09-07
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
2 Research products, page 1 of 1
Loading
- Other research product . 2018Open Access EnglishAuthors:Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; +4 moreAhlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; Citterio, M.; As, D.; Fausto, R. S.; Hubbard, A.;Project: EC | ICE2SEA (226375), NSF | RAPID: Recovery of Data f... (1061864), UKRI | Investigating the Dynamic... (NE/G005796/1)
We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.
- Other research product . 2018Open Access EnglishAuthors:Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; Malfatti, Francesca;Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; Malfatti, Francesca;
handle: 11329/1341
Project: UKRI | Development and applicati... (NE/N006496/1), EC | JERICO-NEXT (654410), EC | AtlantOS (633211), EC | EMSO-Link (731036)In the field of ocean observing, the term of “observatory” is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or “gears” (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions. Refereed 14.A Manual (incl. handbook, guide, cookbook etc) 2018-09-07
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.