- home
- Advanced Search
Loading
apps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA NSF | Long-Term Ecological Rese..., NSF | Long-Term Ecological Rese..., EC | PORTWIMS +3 projectsNSF| Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment ,NSF| Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment ,EC| PORTWIMS ,EC| SHIVA ,NSF| LTER: PALMER, ANTARCTICA LTER: Climate Change, Ecosystem Migration and Teleconnections in an Ice-Dominated Environment ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceValente, André; Sathyendranath, Shubha; Brotas, Vanda; Groom, Steve; Grant, Michael; Jackson, Thomas; Chuprin, Andrei; Taberner, Malcolm; Airs, Ruth; Antoine, David; Arnone, Robert; Balch, William M; Barker, Kathryn; Barlow, Ray; Bélanger, Simon; Berthon, Jean-François; Besiktepe, Sukru; Borsheim, Yngve; Bracher, Astrid; Brando, Vittorio E; Brewin, Robert J W; Canuti, Elisabetta; Chavez, Francisco P; Cianca, Andres; Claustre, Hervé; Clementson, Lesley; Crout, Richard; Ferreira, Afonso; Freeman, Scott; Frouin, Robert; García-Soto, Carlos; Gibb, Stuart W; Goericke, Ralf; Gould, Richard; Guillocheau, Nathalie; Hooker, Stanford B; Hu, Chuamin; Kahru, Mati; Kampel, Milton; Klein, Holger; Kratzer, Susanne; Kudela, Raphael M; Ledesma, Jesus; Lohrenz, Steven; Loisel, Hubert; Mannino, Antonio; Martinez-Vicente, Victor; Matrai, Patricia A; McKee, David; Mitchell, Brian G; Moisan, Tiffany; Montes, Enrique; Muller-Karger, Frank E; Neeley, Aimee; Novak, Michael G; O'Dowd, Leonie; Ondrusek, Michael; Platt, Trevor; Poulton, Alex J; Repecaud, Michel; Röttgers, Rüdiger; Schroeder, Thomas; Smyth, Timothy J; Smythe-Wright, Denise; Sosik, Heidi; Thomas, Crystal S; Thomas, Rob; Tilstone, Gavin H; Tracana, Andreia; Twardowski, Michael S; Vellucci, Vincenzo; Voss, Kenneth; Werdell, Jeremy; Wernand, Marcel Robert; Wojtasiewicz, Bozena; Wright, Simon; Zibordi, Giuseppe;A global compilation of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here, we describe data compiled for the validation of ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO) and span the period from 1997 to 2021. Observations of the following variables were compiled: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient and total suspended matter. The data were obtained from multi-project archives acquired via open internet services, or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The result is a merged table available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3dc6109aaf1087f5fde415eab15f384b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3dc6109aaf1087f5fde415eab15f384b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2020 English EC | STRATOCLIM, UKRI | Reconciling Volcanic Forc..., UKRI | The North Atlantic Climat... +2 projectsEC| STRATOCLIM ,UKRI| Reconciling Volcanic Forcing and Climate Records throughout the Last Millennium (Vol-Clim) ,UKRI| The North Atlantic Climate System Integrated Study ,SNSF| SPARC International Project office ,NSF| Decadal Prediction Following Volcanic EruptionsClyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; Niemeier, Ulrike; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Schmidt, Anja; Stenke, Andrea; Sukhodolov, Timofei; Timmreck, Claudia; Toohey, Matthew; Tummon, Fiona; Zanchettin, Davide; Zhu, Yunqian; Toon, Owen B.;As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2020 EnglishPANGAEA NSF | Management and Operations..., EC | EARTHSEQUENCING, UKRI | Exploring the roles of oc... +1 projectsNSF| Management and Operations of the JOIDES Resolution as a Facility for the International Ocean Discovery Program (IODP) ,EC| EARTHSEQUENCING ,UKRI| Exploring the roles of ocean circulation and orbital forcing on palaeoceanographic conditions in the southern Tethys during the Late Cretaceous ,UKRI| The Impact of Tasman Gateway Opening on Early Paleogene Oceans and ClimateAuthors: Vahlenkamp, Maximilian; De Vleeschouwer, David; Batenburg, Sietske J; Edgar, Kirsty M; +10 AuthorsVahlenkamp, Maximilian; De Vleeschouwer, David; Batenburg, Sietske J; Edgar, Kirsty M; Hanson, C E; Martinez, Mathieu; Pälike, Heiko; MacLeod, Kenneth G; Li, Yong-Xiang; Richter, Carl; Bogus, Kara A; Hobbs, Richard W; Huber, Brian T; Expedition 369 Scientific Participants;The geologic time scale for the Cenozoic Era has been notably improved over the last decades by virtue of integrated stratigraphy, combining high-resolution astrochronologies, biostratigraphy and magnetostratigraphy with high-precision radioisotopic dates. However, the middle Eocene remains a weak link. The so-called "Eocene time scale gap" reflects the scarcity of suitable study sections with clear astronomically-forced variations in carbonate content, primarily because large parts of the oceans were starved of carbonate during the Eocene greenhouse. International Ocean Discovery Program (IODP) Expedition 369 cored a carbonate-rich sedimentary sequence of Eocene age in the Mentelle Basin (Site U1514, offshore southwest Australia). The sequence consists of nannofossil chalk and exhibits rhythmic clay content variability. Here, we show that IODP Site U1514 allows for the extraction of an astronomical signal and the construction of an Eocene astrochronology, using 3-cm resolution X-Ray fluorescence (XRF) core scans. The XRF-derived ratio between calcium and iron content (Ca/Fe) tracks the lithologic variability and serves as the basis for our U1514 astrochronology. We present a 16 million-year-long (40-56 Ma) nearly continuous history of Eocene sedimentation with variations paced by eccentricity and obliquity. We supplement the high-resolution XRF data with low-resolution bulk carbon and oxygen isotopes, recording the long-term cooling trend from the Paleocene-Eocene Thermal Maximum (PETM - ca. 56 Ma) into the middle Eocene (ca. 40 Ma). Our early Eocene astrochronology corroborates existing chronologies based on deep-sea sites and Italian land sections. For the middle Eocene, the sedimentological record at U1514 provides a single-site geochemical backbone and thus offers a further step towards a fully integrated Cenozoic geologic time scale at orbital resolution.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::61b988843ebdaf22294daa340ce376ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::61b988843ebdaf22294daa340ce376ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2019 UKRI | DYNamics and predictabili..., NSF | Holocene reconstructions ..., EC | ATLASUKRI| DYNamics and predictability of the Atlantic Meridional Overturning and Climate (DYNAMOC) ,NSF| Holocene reconstructions of Iceland-Scotland Overflow and the Deep Western Boundary Current ,EC| ATLASThornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor M; Keigwin, Lloyd D;The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle. The AMOC has been shown to be weakening in recent years1; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA—sourced from melting glaciers and thickened sea ice that developed earlier in the LIA—weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet. Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here. The data presented here is the supporting data for Thornalley et al. 2018 (see details below) and is derived from cores KNR-178-56JPC and KNR-178-48JPC. It includes the mean sortable silt size, details of radiocarbon dating, the % nps and binned sub-surface temperature reconstructions.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2019https://doi.org/10.1038/s41586...Data sources: PANGAEAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::447abec15293136db59799c9e44c78f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2019https://doi.org/10.1038/s41586...Data sources: PANGAEAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::447abec15293136db59799c9e44c78f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2019 EnglishPANGAEA - Data Publisher for Earth & Environmental Science EC | ATLAS, NSF | Holocene reconstructions ..., UKRI | DYNamics and predictabili...EC| ATLAS ,NSF| Holocene reconstructions of Iceland-Scotland Overflow and the Deep Western Boundary Current ,UKRI| DYNamics and predictability of the Atlantic Meridional Overturning and Climate (DYNAMOC)Thornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor M; Keigwin, Lloyd D;The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle. The AMOC has been shown to be weakening in recent years1; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA—sourced from melting glaciers and thickened sea ice that developed earlier in the LIA—weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet. Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here. The data presented here is the supporting data for Thornalley et al. 2018 (see details below) and is derived from cores KNR-178-56JPC and KNR-178-48JPC. It includes the mean sortable silt size, details of radiocarbon dating, the % nps and binned sub-surface temperature reconstructions.
https://doi.org/10.1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::2b426383a9ccf3eb05018245e4a15201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::2b426383a9ccf3eb05018245e4a15201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | PALEOGENIE, UKRI | CO2-CarbonCycle-Climate-I...EC| PALEOGENIE ,UKRI| CO2-CarbonCycle-Climate-Interactions (C4I)Wilson, Jamie D.; Barker, Stephen; Edwards, Neil R.; Holden, Philip B.; Ridgwell, Andy;The concentration of CO2 in the atmosphere is sensitive to changes in the depth at which sinking particulate organic matter is remineralized: often described as a change in the exponent “b” of the Martin curve. Sediment trap observations from deep and intermediate depths suggest there is a spatially heterogeneous pattern of b, particularly varying with latitude, but disagree over the exact spatial patterns. Here we use a biogeochemical model of the phosphorus cycle coupled with a steady-state representation of ocean circulation to explore the sensitivity of preformed phosphate and atmospheric CO2 to spatial variability in remineralization depths. A Latin hypercube sampling method is used to simultaneously vary the Martin curve independently within 15 different regions, as a basis for a regression-based analysis used to derive a quantitative measure of sensitivity. Approximately 30 % of the sensitivity of atmospheric CO2 to changes in remineralization depths is driven by changes in the subantarctic region (36 to 60∘ S) similar in magnitude to the Pacific basin despite the much smaller area and lower export production. Overall, the absolute magnitude of sensitivity is controlled by export production, but the relative spatial patterns in sensitivity are predominantly constrained by ocean circulation pathways. The high sensitivity in the subantarctic regions is driven by a combination of high export production and the high connectivity of these regions to regions important for the export of preformed nutrients such as the Southern Ocean and North Atlantic. Overall, regionally varying remineralization depths contribute to variability in CO2 of between around 5 and 15 ppm, relative to a global mean change in remineralization depth. Future changes in the environmental and ecological drivers of remineralization, such as temperature and ocean acidification, are expected to be most significant in the high latitudes where CO2 sensitivity to remineralization is also highest. The importance of ocean circulation pathways to the high sensitivity in subantarctic regions also has significance for past climates given the importance of circulation changes in the Southern Ocean.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::fb02b97e2edc88d9447fdde19d64e4f6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::fb02b97e2edc88d9447fdde19d64e4f6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English NSF | RAPID: Recovery of Data f..., UKRI | Investigating the Dynamic..., EC | ICE2SEANSF| RAPID: Recovery of Data from the 5 August 2010 Petermann Glacier Breakup ,UKRI| Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework ,EC| ICE2SEAAhlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; Citterio, M.; As, D.; Fausto, R. S.; Hubbard, A.;We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2015 EnglishPANGAEA NSF | Collaborative Research: B..., EC | NEWLOG, EC | ACCLIMATE +3 projectsNSF| Collaborative Research: Bipolar Coupling of late Quaternary Ice Sheet Variability ,EC| NEWLOG ,EC| ACCLIMATE ,UKRI| The bi-polar seesaw and CO2: Is there anything special about 'Terminal seesaw events'? ,NSF| Hindcasting the Ocean radiocarbon history of the past 25,000 years ,ARC| Discovery Early Career Researcher Award - Grant ID: DE150100107Gottschalk, Julia; Skinner, Luke C; Misra, Sambuddha; Waelbroeck, Claire; Menviel, Laurie; Timmermann, Axel;The glacial climate system transitioned rapidly between cold (stadial) and warm (interstadial) conditions in the Northern Hemisphere. This variability, referred to as Dansgaard-Oeschger variability, is widely believed to arise from perturbations of the Atlantic Meridional Overturning Circulation. Evidence for such changes during the longer Heinrich stadials has been identified, but direct evidence for overturning circulation changes during Dansgaard-Oeschger events has proven elusive. Here we reconstruct bottom water [CO3]2- variability from B/Ca ratios of benthic foraminifera and indicators of sedimentary dissolution, and use these reconstructions to infer the flow of northern-sourced deep water to the deep central sub-Antarctic Atlantic Ocean. We find that nearly every Dansgaard-Oeschger interstadial is accompanied by a rapid incursion of North Atlantic Deep Water into the deep South Atlantic. Based on these results and transient climate model simulations, we conclude that North Atlantic stadial-interstadial climate variability was associated with significant Atlantic overturning circulation changes that were rapidly transmitted across the Atlantic. However, by demonstrating the persistent role of Atlantic overturning circulation changes in past abrupt climate variability, our reconstructions of carbonate chemistry further indicate that the carbon cycle response to abrupt climate change was not a simple function of North Atlantic overturning.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7f5ba13f155f620b1ce72beb13ea2abc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7f5ba13f155f620b1ce72beb13ea2abc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA NSF | Long-Term Ecological Rese..., NSF | Long-Term Ecological Rese..., EC | PORTWIMS +3 projectsNSF| Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment ,NSF| Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment ,EC| PORTWIMS ,EC| SHIVA ,NSF| LTER: PALMER, ANTARCTICA LTER: Climate Change, Ecosystem Migration and Teleconnections in an Ice-Dominated Environment ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceValente, André; Sathyendranath, Shubha; Brotas, Vanda; Groom, Steve; Grant, Michael; Jackson, Thomas; Chuprin, Andrei; Taberner, Malcolm; Airs, Ruth; Antoine, David; Arnone, Robert; Balch, William M; Barker, Kathryn; Barlow, Ray; Bélanger, Simon; Berthon, Jean-François; Besiktepe, Sukru; Borsheim, Yngve; Bracher, Astrid; Brando, Vittorio E; Brewin, Robert J W; Canuti, Elisabetta; Chavez, Francisco P; Cianca, Andres; Claustre, Hervé; Clementson, Lesley; Crout, Richard; Ferreira, Afonso; Freeman, Scott; Frouin, Robert; García-Soto, Carlos; Gibb, Stuart W; Goericke, Ralf; Gould, Richard; Guillocheau, Nathalie; Hooker, Stanford B; Hu, Chuamin; Kahru, Mati; Kampel, Milton; Klein, Holger; Kratzer, Susanne; Kudela, Raphael M; Ledesma, Jesus; Lohrenz, Steven; Loisel, Hubert; Mannino, Antonio; Martinez-Vicente, Victor; Matrai, Patricia A; McKee, David; Mitchell, Brian G; Moisan, Tiffany; Montes, Enrique; Muller-Karger, Frank E; Neeley, Aimee; Novak, Michael G; O'Dowd, Leonie; Ondrusek, Michael; Platt, Trevor; Poulton, Alex J; Repecaud, Michel; Röttgers, Rüdiger; Schroeder, Thomas; Smyth, Timothy J; Smythe-Wright, Denise; Sosik, Heidi; Thomas, Crystal S; Thomas, Rob; Tilstone, Gavin H; Tracana, Andreia; Twardowski, Michael S; Vellucci, Vincenzo; Voss, Kenneth; Werdell, Jeremy; Wernand, Marcel Robert; Wojtasiewicz, Bozena; Wright, Simon; Zibordi, Giuseppe;A global compilation of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here, we describe data compiled for the validation of ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO) and span the period from 1997 to 2021. Observations of the following variables were compiled: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient and total suspended matter. The data were obtained from multi-project archives acquired via open internet services, or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The result is a merged table available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3dc6109aaf1087f5fde415eab15f384b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3dc6109aaf1087f5fde415eab15f384b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2020 English EC | STRATOCLIM, UKRI | Reconciling Volcanic Forc..., UKRI | The North Atlantic Climat... +2 projectsEC| STRATOCLIM ,UKRI| Reconciling Volcanic Forcing and Climate Records throughout the Last Millennium (Vol-Clim) ,UKRI| The North Atlantic Climate System Integrated Study ,SNSF| SPARC International Project office ,NSF| Decadal Prediction Following Volcanic EruptionsClyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.; Khodri, Myriam; Ball, William; Bekki, Slimane; Dhomse, Sandip S.; Lebas, Nicolas; Mann, Graham; Marshall, Lauren; Niemeier, Ulrike; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Schmidt, Anja; Stenke, Andrea; Sukhodolov, Timofei; Timmreck, Claudia; Toohey, Matthew; Tummon, Fiona; Zanchettin, Davide; Zhu, Yunqian; Toon, Owen B.;As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::506fb7f31a4a5c628fc57904bf691952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2020 EnglishPANGAEA NSF | Management and Operations..., EC | EARTHSEQUENCING, UKRI | Exploring the roles of oc... +1 projectsNSF| Management and Operations of the JOIDES Resolution as a Facility for the International Ocean Discovery Program (IODP) ,EC| EARTHSEQUENCING ,UKRI| Exploring the roles of ocean circulation and orbital forcing on palaeoceanographic conditions in the southern Tethys during the Late Cretaceous ,UKRI| The Impact of Tasman Gateway Opening on Early Paleogene Oceans and ClimateAuthors: Vahlenkamp, Maximilian; De Vleeschouwer, David; Batenburg, Sietske J; Edgar, Kirsty M; +10 AuthorsVahlenkamp, Maximilian; De Vleeschouwer, David; Batenburg, Sietske J; Edgar, Kirsty M; Hanson, C E; Martinez, Mathieu; Pälike, Heiko; MacLeod, Kenneth G; Li, Yong-Xiang; Richter, Carl; Bogus, Kara A; Hobbs, Richard W; Huber, Brian T; Expedition 369 Scientific Participants;The geologic time scale for the Cenozoic Era has been notably improved over the last decades by virtue of integrated stratigraphy, combining high-resolution astrochronologies, biostratigraphy and magnetostratigraphy with high-precision radioisotopic dates. However, the middle Eocene remains a weak link. The so-called "Eocene time scale gap" reflects the scarcity of suitable study sections with clear astronomically-forced variations in carbonate content, primarily because large parts of the oceans were starved of carbonate during the Eocene greenhouse. International Ocean Discovery Program (IODP) Expedition 369 cored a carbonate-rich sedimentary sequence of Eocene age in the Mentelle Basin (Site U1514, offshore southwest Australia). The sequence consists of nannofossil chalk and exhibits rhythmic clay content variability. Here, we show that IODP Site U1514 allows for the extraction of an astronomical signal and the construction of an Eocene astrochronology, using 3-cm resolution X-Ray fluorescence (XRF) core scans. The XRF-derived ratio between calcium and iron content (Ca/Fe) tracks the lithologic variability and serves as the basis for our U1514 astrochronology. We present a 16 million-year-long (40-56 Ma) nearly continuous history of Eocene sedimentation with variations paced by eccentricity and obliquity. We supplement the high-resolution XRF data with low-resolution bulk carbon and oxygen isotopes, recording the long-term cooling trend from the Paleocene-Eocene Thermal Maximum (PETM - ca. 56 Ma) into the middle Eocene (ca. 40 Ma). Our early Eocene astrochronology corroborates existing chronologies based on deep-sea sites and Italian land sections. For the middle Eocene, the sedimentological record at U1514 provides a single-site geochemical backbone and thus offers a further step towards a fully integrated Cenozoic geologic time scale at orbital resolution.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::61b988843ebdaf22294daa340ce376ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::61b988843ebdaf22294daa340ce376ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2019 UKRI | DYNamics and predictabili..., NSF | Holocene reconstructions ..., EC | ATLASUKRI| DYNamics and predictability of the Atlantic Meridional Overturning and Climate (DYNAMOC) ,NSF| Holocene reconstructions of Iceland-Scotland Overflow and the Deep Western Boundary Current ,EC| ATLASThornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor M; Keigwin, Lloyd D;The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle. The AMOC has been shown to be weakening in recent years1; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA—sourced from melting glaciers and thickened sea ice that developed earlier in the LIA—weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet. Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here. The data presented here is the supporting data for Thornalley et al. 2018 (see details below) and is derived from cores KNR-178-56JPC and KNR-178-48JPC. It includes the mean sortable silt size, details of radiocarbon dating, the % nps and binned sub-surface temperature reconstructions.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2019https://doi.org/10.1038/s41586...Data sources: PANGAEAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::447abec15293136db59799c9e44c78f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2019https://doi.org/10.1038/s41586...Data sources: PANGAEAAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::447abec15293136db59799c9e44c78f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2019 EnglishPANGAEA - Data Publisher for Earth & Environmental Science EC | ATLAS, NSF | Holocene reconstructions ..., UKRI | DYNamics and predictabili...EC| ATLAS ,NSF| Holocene reconstructions of Iceland-Scotland Overflow and the Deep Western Boundary Current ,UKRI| DYNamics and predictability of the Atlantic Meridional Overturning and Climate (DYNAMOC)Thornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor M; Keigwin, Lloyd D;The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle. The AMOC has been shown to be weakening in recent years1; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA—sourced from melting glaciers and thickened sea ice that developed earlier in the LIA—weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet. Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here. The data presented here is the supporting data for Thornalley et al. 2018 (see details below) and is derived from cores KNR-178-56JPC and KNR-178-48JPC. It includes the mean sortable silt size, details of radiocarbon dating, the % nps and binned sub-surface temperature reconstructions.
https://doi.org/10.1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::2b426383a9ccf3eb05018245e4a15201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::2b426383a9ccf3eb05018245e4a15201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | PALEOGENIE, UKRI | CO2-CarbonCycle-Climate-I...EC| PALEOGENIE ,UKRI| CO2-CarbonCycle-Climate-Interactions (C4I)Wilson, Jamie D.; Barker, Stephen; Edwards, Neil R.; Holden, Philip B.; Ridgwell, Andy;The concentration of CO2 in the atmosphere is sensitive to changes in the depth at which sinking particulate organic matter is remineralized: often described as a change in the exponent “b” of the Martin curve. Sediment trap observations from deep and intermediate depths suggest there is a spatially heterogeneous pattern of b, particularly varying with latitude, but disagree over the exact spatial patterns. Here we use a biogeochemical model of the phosphorus cycle coupled with a steady-state representation of ocean circulation to explore the sensitivity of preformed phosphate and atmospheric CO2 to spatial variability in remineralization depths. A Latin hypercube sampling method is used to simultaneously vary the Martin curve independently within 15 different regions, as a basis for a regression-based analysis used to derive a quantitative measure of sensitivity. Approximately 30 % of the sensitivity of atmospheric CO2 to changes in remineralization depths is driven by changes in the subantarctic region (36 to 60∘ S) similar in magnitude to the Pacific basin despite the much smaller area and lower export production. Overall, the absolute magnitude of sensitivity is controlled by export production, but the relative spatial patterns in sensitivity are predominantly constrained by ocean circulation pathways. The high sensitivity in the subantarctic regions is driven by a combination of high export production and the high connectivity of these regions to regions important for the export of preformed nutrients such as the Southern Ocean and North Atlantic. Overall, regionally varying remineralization depths contribute to variability in CO2 of between around 5 and 15 ppm, relative to a global mean change in remineralization depth. Future changes in the environmental and ecological drivers of remineralization, such as temperature and ocean acidification, are expected to be most significant in the high latitudes where CO2 sensitivity to remineralization is also highest. The importance of ocean circulation pathways to the high sensitivity in subantarctic regions also has significance for past climates given the importance of circulation changes in the Southern Ocean.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::fb02b97e2edc88d9447fdde19d64e4f6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::fb02b97e2edc88d9447fdde19d64e4f6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English NSF | RAPID: Recovery of Data f..., UKRI | Investigating the Dynamic..., EC | ICE2SEANSF| RAPID: Recovery of Data from the 5 August 2010 Petermann Glacier Breakup ,UKRI| Investigating the Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a Geophysical, Remote-Sensing and Numerical Modelling Framework ,EC| ICE2SEAAhlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.; Machguth, H.; Nick, F. M.; Joughin, I.; Reijmer, C. H.; Wal, R. S. W.; Merryman Boncori, J. P.; Box, J. E.; Citterio, M.; As, D.; Fausto, R. S.; Hubbard, A.;We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all the observed glacier velocity records is a pronounced seasonal variation, with an early melt season maximum generally followed by a rapid mid-melt season deceleration. The GPS-derived velocities are compared to velocities derived from radar satellite imagery over six of the glaciers to illustrate the potential of the GPS data for validation purposes. Three different velocity map products are evaluated, based on ALOS/PALSAR data, TerraSAR-X/Tandem-X data and an aggregate winter TerraSAR-X data set. The velocity maps derived from TerraSAR-X/Tandem-X data have a mean difference of 1.5% compared to the mean GPS velocity over the corresponding period, while velocity maps derived from ALOS/PALSAR data have a mean difference of 9.7%. The velocity maps derived from the aggregate winter TerraSAR-X data set have a mean difference of 9.5% to the corresponding GPS velocities. The data are available from the GEUS repository at doi:10.5280/GEUS000001.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::c149339121fdf9e5fa155beb2428f19e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2015 EnglishPANGAEA NSF | Collaborative Research: B..., EC | NEWLOG, EC | ACCLIMATE +3 projectsNSF| Collaborative Research: Bipolar Coupling of late Quaternary Ice Sheet Variability ,EC| NEWLOG ,EC| ACCLIMATE ,UKRI| The bi-polar seesaw and CO2: Is there anything special about 'Terminal seesaw events'? ,NSF| Hindcasting the Ocean radiocarbon history of the past 25,000 years ,ARC| Discovery Early Career Researcher Award - Grant ID: DE150100107Gottschalk, Julia; Skinner, Luke C; Misra, Sambuddha; Waelbroeck, Claire; Menviel, Laurie; Timmermann, Axel;The glacial climate system transitioned rapidly between cold (stadial) and warm (interstadial) conditions in the Northern Hemisphere. This variability, referred to as Dansgaard-Oeschger variability, is widely believed to arise from perturbations of the Atlantic Meridional Overturning Circulation. Evidence for such changes during the longer Heinrich stadials has been identified, but direct evidence for overturning circulation changes during Dansgaard-Oeschger events has proven elusive. Here we reconstruct bottom water [CO3]2- variability from B/Ca ratios of benthic foraminifera and indicators of sedimentary dissolution, and use these reconstructions to infer the flow of northern-sourced deep water to the deep central sub-Antarctic Atlantic Ocean. We find that nearly every Dansgaard-Oeschger interstadial is accompanied by a rapid incursion of North Atlantic Deep Water into the deep South Atlantic. Based on these results and transient climate model simulations, we conclude that North Atlantic stadial-interstadial climate variability was associated with significant Atlantic overturning circulation changes that were rapidly transmitted across the Atlantic. However, by demonstrating the persistent role of Atlantic overturning circulation changes in past abrupt climate variability, our reconstructions of carbonate chemistry further indicate that the carbon cycle response to abrupt climate change was not a simple function of North Atlantic overturning.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7f5ba13f155f620b1ce72beb13ea2abc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::7f5ba13f155f620b1ce72beb13ea2abc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu