- home
- Advanced Search
3 Research products, page 1 of 1
Loading
- Other research product . 2018Open Access EnglishAuthors:Quiquet, A.; Punge, H. J.; Ritz, C.; Fettweis, X.; Gallée, H.; Kageyama, M.; Krinner, G.; Salas y Mélia, D.; Sjolte, J.;Quiquet, A.; Punge, H. J.; Ritz, C.; Fettweis, X.; Gallée, H.; Kageyama, M.; Krinner, G.; Salas y Mélia, D.; Sjolte, J.;Project: EC | COMBINE (226520), EC | ICE2SEA (226375)
Predicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS).
- Other research product . 2018Open Access EnglishAuthors:Fürst, Johannes Jakob; Gillet-Chaulet, Fabien; Benham, Toby J.; Dowdeswell, Julian A.; Grabiec, Mariusz; Navarro, Francisco; Pettersson, Rickard; Moholdt, Geir; Nuth, Christopher; Sass, Björn; +5 moreFürst, Johannes Jakob; Gillet-Chaulet, Fabien; Benham, Toby J.; Dowdeswell, Julian A.; Grabiec, Mariusz; Navarro, Francisco; Pettersson, Rickard; Moholdt, Geir; Nuth, Christopher; Sass, Björn; Aas, Kjetil; Fettweis, Xavier; Lang, Charlotte; Seehaus, Thorsten; Braun, Matthias;Project: EC | ICEMASS (320816), EC | ICE2SEA (226375)
The basal topography is largely unknown beneath most glaciers and ice caps, and many attempts have been made to estimate a thickness field from other more accessible information at the surface. Here, we present a two-step reconstruction approach for ice thickness that solves mass conservation over single or several connected drainage basins. The approach is applied to a variety of test geometries with abundant thickness measurements including marine- and land-terminating glaciers as well as a 2400 km2 ice cap on Svalbard. The input requirements are kept to a minimum for the first step. In this step, a geometrically controlled, non-local flux solution is converted into thickness values relying on the shallow ice approximation (SIA). In a second step, the thickness field is updated along fast-flowing glacier trunks on the basis of velocity observations. Both steps account for available thickness measurements. Each thickness field is presented together with an error-estimate map based on a formal propagation of input uncertainties. These error estimates point out that the thickness field is least constrained near ice divides or in other stagnant areas. Withholding a share of the thickness measurements, error estimates tend to overestimate mismatch values in a median sense. We also have to accept an aggregate uncertainty of at least 25 % in the reconstructed thickness field for glaciers with very sparse or no observations. For Vestfonna ice cap (VIC), a previous ice volume estimate based on the same measurement record as used here has to be corrected upward by 22 %. We also find that a 13 % area fraction of the ice cap is in fact grounded below sea level. The former 5 % estimate from a direct measurement interpolation exceeds an aggregate maximum range of 6–23 % as inferred from the error estimates here.
- Other research product . 2018Open Access EnglishAuthors:Fürst, J. J.; Goelzer, H.; Huybrechts, P.;Fürst, J. J.; Goelzer, H.; Huybrechts, P.;Project: EC | ICE2SEA (226375)
Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.
3 Research products, page 1 of 1
Loading
- Other research product . 2018Open Access EnglishAuthors:Quiquet, A.; Punge, H. J.; Ritz, C.; Fettweis, X.; Gallée, H.; Kageyama, M.; Krinner, G.; Salas y Mélia, D.; Sjolte, J.;Quiquet, A.; Punge, H. J.; Ritz, C.; Fettweis, X.; Gallée, H.; Kageyama, M.; Krinner, G.; Salas y Mélia, D.; Sjolte, J.;Project: EC | COMBINE (226520), EC | ICE2SEA (226375)
Predicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS).
- Other research product . 2018Open Access EnglishAuthors:Fürst, Johannes Jakob; Gillet-Chaulet, Fabien; Benham, Toby J.; Dowdeswell, Julian A.; Grabiec, Mariusz; Navarro, Francisco; Pettersson, Rickard; Moholdt, Geir; Nuth, Christopher; Sass, Björn; +5 moreFürst, Johannes Jakob; Gillet-Chaulet, Fabien; Benham, Toby J.; Dowdeswell, Julian A.; Grabiec, Mariusz; Navarro, Francisco; Pettersson, Rickard; Moholdt, Geir; Nuth, Christopher; Sass, Björn; Aas, Kjetil; Fettweis, Xavier; Lang, Charlotte; Seehaus, Thorsten; Braun, Matthias;Project: EC | ICEMASS (320816), EC | ICE2SEA (226375)
The basal topography is largely unknown beneath most glaciers and ice caps, and many attempts have been made to estimate a thickness field from other more accessible information at the surface. Here, we present a two-step reconstruction approach for ice thickness that solves mass conservation over single or several connected drainage basins. The approach is applied to a variety of test geometries with abundant thickness measurements including marine- and land-terminating glaciers as well as a 2400 km2 ice cap on Svalbard. The input requirements are kept to a minimum for the first step. In this step, a geometrically controlled, non-local flux solution is converted into thickness values relying on the shallow ice approximation (SIA). In a second step, the thickness field is updated along fast-flowing glacier trunks on the basis of velocity observations. Both steps account for available thickness measurements. Each thickness field is presented together with an error-estimate map based on a formal propagation of input uncertainties. These error estimates point out that the thickness field is least constrained near ice divides or in other stagnant areas. Withholding a share of the thickness measurements, error estimates tend to overestimate mismatch values in a median sense. We also have to accept an aggregate uncertainty of at least 25 % in the reconstructed thickness field for glaciers with very sparse or no observations. For Vestfonna ice cap (VIC), a previous ice volume estimate based on the same measurement record as used here has to be corrected upward by 22 %. We also find that a 13 % area fraction of the ice cap is in fact grounded below sea level. The former 5 % estimate from a direct measurement interpolation exceeds an aggregate maximum range of 6–23 % as inferred from the error estimates here.
- Other research product . 2018Open Access EnglishAuthors:Fürst, J. J.; Goelzer, H.; Huybrechts, P.;Fürst, J. J.; Goelzer, H.; Huybrechts, P.;Project: EC | ICE2SEA (226375)
Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.