- home
- Advanced Search
Filters
Clear AllLoading
apps Other research product2019 English NSF | Collaborative Research: A..., NSERC, NWO | Perturbations of System E... +1 projectsNSF| Collaborative Research: Arctic Temperature Amplification during the Middle Pliocene (ArcAMP): Assessing the Interaction Among Feedback Mechanisms ,NSERC ,NWO| Perturbations of System Earth: Reading the Past to Project the Future - A proposal to create the Netherlands Earth System Science Centre (ESSC) ,EC| PACEMAKERAuthors: Fletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; +3 AuthorsFletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; Rybczynski, Natalia; Gosse, John C.; Ballantyne, Ashley P.;The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intriguing, but not fully understood, feature of the early to mid-Pliocene climate is the amplified Arctic temperature response and its impact on Arctic ecosystems. Only the most recent models appear to correctly estimate the degree of warming in the Pliocene Arctic and validation of the currently proposed feedbacks is limited by scarce terrestrial records of climate and environment. Here we reconstruct the summer temperature and fire regime from a subfossil fen-peat deposit on west–central Ellesmere Island, Canada, that has been chronologically constrained using cosmogenic nuclide burial dating to 3.9+1.5/-0.5 Ma. The estimate for average mean summer temperature is 15.4±0.8 ∘C using specific bacterial membrane lipids, i.e., branched glycerol dialkyl glycerol tetraethers. This is above the proposed threshold that predicts a substantial increase in wildfire in the modern high latitudes. Macro-charcoal was present in all samples from this Pliocene section with notably higher charcoal concentration in the upper part of the sequence. This change in charcoal was synchronous with a change in vegetation that included an increase in abundance of fire-promoting Pinus and Picea. Paleo-vegetation reconstructions are consistent with warm summer temperatures, relatively low summer precipitation and an incidence of fire comparable to fire-adapted boreal forests of North America and central Siberia. To our knowledge, this site provides the northernmost evidence of fire during the Pliocene. It suggests that ecosystem productivity was greater than in the present day, providing fuel for wildfires, and that the climate was conducive to the ignition of fire during this period. The results reveal that interactions between paleo-vegetation and paleoclimate were mediated by fire in the High Arctic during the Pliocene, even though CO2 concentrations were similar to modern values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 EC | PAGE21EC| PAGE21Chadburn Sarah; Krinner Gerhard; Porada Philipp; Bartsch Annett; Beer Christian; Belelli Marchesini Luca; Boike Julia; Ekici Altug; Elberling Bo; Friborg Thomas; Hugelius Gustaf; Johansson Margareta; Kuhry Peter; Kutzbach Lars; Langer Moritz; Lund Magnus; Parmentier Frans-Jan W; Peng Shushi; van Huissteden Jacobus (Ko); Wang Tao; Westermann Sebastian; Zhu Dan; Burke Eleanor J;It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 United Kingdom EnglishGeological Society of London Wang, Bangbing; Sun, Bo; Martin, Carlos; Ferraccioli, Fausto; Steinhage, Daniel; Cui, Xiangbin; Siegert, Martin J.;Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Owing to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred metres thick, extending over hundreds of square kilometres. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth–age profile at Dome A. The fabric units correlate with glacial–interglacial cycles, most noticeably revealing crystal alignment contrasts between the Eemian and the glacial episodes before and after. The anisotropy within these fabric layers has a spatial pattern determined by ice flow over subglacial topography.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 13 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research product2019 English NSF | Collaborative Research: A..., NSERC, NWO | Perturbations of System E... +1 projectsNSF| Collaborative Research: Arctic Temperature Amplification during the Middle Pliocene (ArcAMP): Assessing the Interaction Among Feedback Mechanisms ,NSERC ,NWO| Perturbations of System Earth: Reading the Past to Project the Future - A proposal to create the Netherlands Earth System Science Centre (ESSC) ,EC| PACEMAKERAuthors: Fletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; +3 AuthorsFletcher, Tamara L.; Warden, Lisa; Sinninghe Damsté, Jaap S.; Brown, Kendrick J.; Rybczynski, Natalia; Gosse, John C.; Ballantyne, Ashley P.;The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intriguing, but not fully understood, feature of the early to mid-Pliocene climate is the amplified Arctic temperature response and its impact on Arctic ecosystems. Only the most recent models appear to correctly estimate the degree of warming in the Pliocene Arctic and validation of the currently proposed feedbacks is limited by scarce terrestrial records of climate and environment. Here we reconstruct the summer temperature and fire regime from a subfossil fen-peat deposit on west–central Ellesmere Island, Canada, that has been chronologically constrained using cosmogenic nuclide burial dating to 3.9+1.5/-0.5 Ma. The estimate for average mean summer temperature is 15.4±0.8 ∘C using specific bacterial membrane lipids, i.e., branched glycerol dialkyl glycerol tetraethers. This is above the proposed threshold that predicts a substantial increase in wildfire in the modern high latitudes. Macro-charcoal was present in all samples from this Pliocene section with notably higher charcoal concentration in the upper part of the sequence. This change in charcoal was synchronous with a change in vegetation that included an increase in abundance of fire-promoting Pinus and Picea. Paleo-vegetation reconstructions are consistent with warm summer temperatures, relatively low summer precipitation and an incidence of fire comparable to fire-adapted boreal forests of North America and central Siberia. To our knowledge, this site provides the northernmost evidence of fire during the Pliocene. It suggests that ecosystem productivity was greater than in the present day, providing fuel for wildfires, and that the climate was conducive to the ignition of fire during this period. The results reveal that interactions between paleo-vegetation and paleoclimate were mediated by fire in the High Arctic during the Pliocene, even though CO2 concentrations were similar to modern values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::a5bebbc9689d2a9be3e465c2dfd9c1f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 EC | PAGE21EC| PAGE21Chadburn Sarah; Krinner Gerhard; Porada Philipp; Bartsch Annett; Beer Christian; Belelli Marchesini Luca; Boike Julia; Ekici Altug; Elberling Bo; Friborg Thomas; Hugelius Gustaf; Johansson Margareta; Kuhry Peter; Kutzbach Lars; Langer Moritz; Lund Magnus; Parmentier Frans-Jan W; Peng Shushi; van Huissteden Jacobus (Ko); Wang Tao; Westermann Sebastian; Zhu Dan; Burke Eleanor J;It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::92d46c9a57ab61da0227b5f515d4cb82&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 United Kingdom EnglishGeological Society of London Wang, Bangbing; Sun, Bo; Martin, Carlos; Ferraccioli, Fausto; Steinhage, Daniel; Cui, Xiangbin; Siegert, Martin J.;Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Owing to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred metres thick, extending over hundreds of square kilometres. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth–age profile at Dome A. The fabric units correlate with glacial–interglacial cycles, most noticeably revealing crystal alignment contrasts between the Eemian and the glacial episodes before and after. The anisotropy within these fabric layers has a spatial pattern determined by ice flow over subglacial topography.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 13 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1002::3df1a39d68002f4cd9aeb0c45582e089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu