Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
1,579 Research products

  • European Marine Science
  • Other research products
  • Open Access
  • EU
  • US
  • NL
  • FR
  • European Marine Science

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Orth, Donald J.;

    These supplementary teaching resources align to the open textbook, Fish, Fishing, and Conservation which is a 389-page, peer-reviewed publicly-available, openly-licensed textbook intended for undergraduate students who are exploring majors in Fish & Wildlife. It is also relevant to a general audience or for use in courses which explore social and ethical aspects of fish, fishing and conservation. The open textbook, Fish, Fishing, and Conservation, is freely available at https://doi.org/10.21061/fishandconservation Supplementary teaching resources include a sample course syllabus, schedule, and a variety of assignments. Individuals who wish to share their materials relevant to teaching in this subject area are encouraged to join and share their openly-licensed resources via the Fish, Fishing, and Conservation Instructor Group in OERCommons Are you reviewing or adopting Fish, Fishing, and Conservation for a course? Please help us understand your use by completing this form https://bit.ly/fishandconservation_interest VIVA (Virtual Library of Virginia)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pasquale Pagano; Sara Pittonet; Federico Drago; Maria Giuffrida;

    There are several research infrastructures or other data services running in Europe that cover a multitude of marine-related sciences, providing specific datasets coming from observations collected with different methods. These infrastructures constitute a diverse world, each looking at a piece of the big picture, sometimes hindering collaboration and data sharing. Blue-Cloud aims to overcome fragmentation and build a bridge between thematic science clusters - such as marine, climate, food and agriculture sciences - and EOSC, creating a data federation and providing a common access to a so-called thematic EOSC for marine data. By connecting leading marine data management infrastructures with horizontal e-infrastructures, the project aims to maximise the exploitation of data resources available from different sources. The Blue-Cloud framework consists of two major technical components: (1) a Blue-Cloud Data Discovery and Access service, already presented in a previous EOSC in practice story, to serve federated discovery and access to blue data infrastructures, and (2) a Blue-Cloud Virtual Research Environment (VRE) to provide computing platforms and analytical services facilitating the collaboration between researchers, which is detailed hereafter. The Blue-Cloud VRE is powered by the D4Science Infrastructure. [M. Assante et al. (2019) Enacting open science by D4Science. Future Gener. Comput. Syst. 101: 555-563 10.1016/j.future.2019.05.063 ] The full list of EOSC in practice stories is available here

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility45
    visibilityviews45
    downloaddownloads37
    Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Love, Connor;

    The creation, movement, and consumption of distinct biomolecules by marine organisms has far reaching implications regarding ecosystem material and energy flow and how we manage the marine environment. Lipids are ubiquitous, energy rich biomolecules that are essential for all life and are used for cell membrane structure, energy storage and serve as useful indicators for ecosystem and food web dynamics. In this dissertation, the flow of specific lipid biomolecules through multiple marine environments is measured, explored, and clarified to better understand biogeochemical cycles, marine food webs and ecosystem connectivity. In the first chapter of my dissertation, I measure, quantify, and close the loop of the open ocean microbial hydrocarbon cycle, with implications for priming effects of the ocean microbiome to oil spills. It is estimated that seeps, spills, and other oil pollution introduce ~ 1.3 million tons (1.3 Tg) of hydrocarbons into the ocean each year. Additionally, it is known that globally abundant marine cyanobacteria Prochlorococcus and Synechococcus which account for ~25% of ocean net primary production also produce hydrocarbons from fatty acids. But little is known about the size, turnover and fate of these cyanobacterial hydrocarbons and the implications for the ocean’s microbiome response to future oil spills. From a research expedition in the North Atlantic, I report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane which correlates tightly with fluorescence and Prochlorococcus abundance in oligotrophic waters. Using chemical and isotopic tracing I find that pentadecane production and diel dynamics mainly occurs in the lower euphotic zone at the deep chlorophyll maximum. I estimate the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100 to 500-fold, with cyanobacteria producing ~ 130-650 million tons of pentadecane per year. Analysis of sinking particles at the base of the euphotic zone show that nearly all pentadecane (< 0.001 % remaining) is consumed within the euphotic zone, suggesting near complete consumption of these hydrocarbons by hydrocarbon degrading microbes. These findings characterize a wide-spread microbial hydrocarbon cycle that selectively primes the ocean’s microbiome with long-chain alkanes. In the second chapter of my dissertation, I conduct a large-scale feeding experiment on a symbiotic reef-building coral (Stylophora pistillata) in the Red Sea to clarify fatty acid and isotopic biomarker patterns of coral heterotrophy for use in the field. Coral heterotrophy is an often-overlooked facet of coral nutrition that provides essential nutrients that help corals resist and recover from thermally induced bleaching that is degrading reef ecosystems around the world due to rising global ocean temperatures. Yet, methods for measuring coral mixotrophy, the balance between organic matter contributions to the coral host from autotrophic photo endosymbionts and heterotrophy on particles and plankton have typically been too coarse to elucidate source contributions. Through my experiment I show that fatty acids and isotopic biomarkers reliably separate experimental and reef nutritional source groups (heterotrophic or autotrophic). I show that heterotrophic fatty acid biomarkers are reliably recorded into coral host and symbiont tissues, with a divergent metabolic pattern of autotrophic biomarkers as feeding increases due to positive feedback of heterotrophy on the in hospite photo symbiont population. Additionally, I show that nitrogen and essential fatty acids are preferentially recorded into coral tissue while most heterotrophic carbon is respired or exuded as mucous; this shows that the use of bulk carbon isotopes as a feeding proxy for the last ~ 40 years is largely underestimating the contribution of heterotrophy to the trophic ecology of reef building corals. Overall, this finding underscores a connectivity between oceanic phyto- and zooplankton and reef-building coral. In the third chapter of my dissertation, I explore the mixotrophic differences of divergent bleaching responses of Acropora hyacinthus colonies on the forereef of Mo’orea during the 2019 mass bleaching event. During this bleaching event, all colonies of A. hyacinthus on the deep forereef (14 m) bleached and recovered, while colonies on the shallow forereef (5 m) near the reef crest resisted bleaching entirely, despite the same temperature stress. Using fatty acid and isotopic biomarkers I show through several lines of evidence that bleaching resistant colonies near the reef crest were likely consuming more particulate organic matter than deep forereef colonies. This conclusion is supported by isotopic feeding proxies, less isotopic niche overlap of the host and symbiont of resistant colonies, and larger proportions of putative POM fatty acid biomarkers in the host of resistant colonies relative to recovered colonies. This interpretation is in line with observations that benthic communities on the reef crest are a net sink of oceanic POM and that increased reliance on heterotrophy is associated with bleaching resistance. These data show the vital importance of reef environment, coral heterotrophy, and planktonic subsidies in structuring bleaching response of corals in a warming ocean and ultimately show that the reef crest may serve as a potent zone for reseeding coral populations after marine heat waves.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Herzschuh, Ulrike; Böhmer, Thomas; Li, Chenzhi; Cao, Xianyong;

    This dataset presents temperature and precipitation reconstruction from pollen records of the Northern Hemisphere. Most of the pollen proxy data where retrieved from the Neotoma Paleoecology Database (https://www.neotomadb.org/), with additional data from Cao et al. (2020; https://doi.org/10.5194/essd-12-119-2020), Cao et al. (2013, https://doi.org/10.1016/j.revpalbo.2013.02.003) and our own collection. Mean July temperature, annual mean temperature and annual precipitation were reconstructed for 2593 sites (1030 sites in North America, 1075 sites in Europe and 488 sites in Asia) using the full modern temperature and precipitation range, as well as using a "tailored" version, where we restricted a climate variable range to reconstruct the respective other climate variable in order to minimize the impact of co-correlation. Statistics on the used calibration sets (i.e. all samples within 2000 km distance to the fossil pollen records) are also provided, as well as results from the significance test of the reconstructions sensu Telford & Birks (2011). The data collection is subdivided in 4 geographical regions: The European, the Asian and for North America the Western North American and the Eastern North American sector. We complement the data publication by providing the source information on the references (most data are related to Neotoma) as a table linked to each Dataset ID, The Dataset- and Site-IDs are from Neotoma if the data sets are derived from the Neotoma repository. In case of our own data collection efforts (Cao et al. (2020), Cao et al. (2013) and our own data) we used the already published PANGAEA event names in case they are related to the data or created own site names with referencing to geographical regions similar to the Neotoma data naming principle.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tsai, Brandon Te-hao;

    Understanding what factors shape the magnitude of divergence under rapid evolution is critical. Phenotypic divergence, specifically, can be influenced by selective forces such as the environment (climate, geographic distance) as well as non-selective forces (genetic composition of the founding population). Threespine sticklebacks provide a unique opportunity to study the magnitude of divergence under rapid evolution. Marine sticklebacks independently colonized freshwater habitats at the end of the last ice age (~12,000 years ago) generating multiple replicate pairs that represent a natural experiment. However, studies rely on untested assumptions that marine sticklebacks are not phenotypically varied and are unchanged from their ancestors. Here, we test how differential environmental conditions impact the estimated magnitude of phenotypic divergence and parallelism of independent freshwater stickleback populations. We find that marine variation is comparable to freshwater variation. Importantly, the inferred magnitude of phenotypic divergence of each freshwater population is dependent on marine sampling location. The geographic distance and environmental similarity between the marine and freshwater pairs explain a significant degree of variance. When estimating the degree of parallelism among freshwater pairs, marine reference also affects the inferred magnitude. The observed pattern suggests the choice of reference population and its geographic distance are important aspects to consider when estimating freshwater divergence and parallelism. Results also implicate a signature of local adaptation and/or isolation by distance. We provide recommendations for choosing ecologically relevant marine references in future studies on this important evolutionary model system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Xue, Carolyn;

    Widespread overuse and large-scale production of antibiotics create antibiotic pollution, disrupting environmental microbiota and creating a public health risk. Highly urbanized coastal environments can be under high impact from antibiotic pollution from many trails of polluted effluents and runoff. The city of Long Beach is one such coastal area under high impact, since it is highly urban, industrialized, and experiences frequent sewage spills. We collected water samples from the LA River in a transect running southwest into the San Pedro Channel in order to investigate (1) how does strength of antibiotic resistance change as distance from shore increases, and (2) does antibiotic resistance correlate with composition of the bacterial community. There was no consistent relationship between strength of antibiotic resistance and distance from shore. Instead, we found that bacteria from the Pacific Ocean showed higher antibiotic resistance than bacteria from the LA River in five out of eleven antibiotic treatments. We also found that the alpha diversity of bacterial communities was lower in the LA River samples compared, and alpha diversity positively correlated with strength of antibiotic resistance in four antibiotic treatments. Our findings highlight how prevalence of antibiotic pollution does not always follow a distance dilution, as well as the need for understanding the strength behind antibiotic resistance in marine bacteria.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Orejas, Covadonga; Antón-Sempere, Silvia; Terrón-Singler, Alexis; Grau, Amalia;

    This bundled publication contains data sets on 1) Polyp size and sex: biometric data of polyps from Dendrophyllia ramea, as well as the sex of each analysed polyp; 2) Oocyte per mesentery: number of oocytes per analysed mesentery; 3) Oocytes per polyp: these data have been used to calculate fecundity; 4) Oocyte developmental stages: oocyte sizes and developmental stage are included; 5. Spermatic cysts: spermatic cysts sizes and developmental stage are included. A total of three polyps per each coral colony have been analysed by histological methods and a total of three coral colonies have been analysed for each sampling month: February 2018, May 2017, July 2018 and October 2017. Samples have been collected in the protected area of Punta La Mona (Granada, Alborán Sea, western Mediterranean) between 30 and 37 meters depth by scuba diving.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oppong-Danquah, Ernest; Miranda, Martina; Blümel, Martina; Tasdemir, Deniz;

    This study aimed at isolating microorganisms associated with the mesopelagic jellyfish Periphylla periphylla collected in Irminger Sea at a depth of 325 m in July 2020. Three different solid cultivation media; Hastings, Marine agar and Wickerham media were used for the isolation of the associated microorganisms. A total of 43 bacteria were isolated from the inner and outer surfaces of the umbrella of P. periphylla, but unfortunately, no fungal strain was isolated. Isolates were further identified by Sanger sequencing of the 16S rRNA gene, and based on phylogenetic distinctiveness (differences in closest relative species according to the nucleotide BLAST), 16 bacteria belonging to 8 different genera were selected and subjected to an OSMAC cultivation regime approach using liquid and solid marine broth and glucose– yeast–malt media. After 7 days of cultivation, cultures were extracted with ethyl acetate and assessed for antimicrobial activity against fish and human pathogens. Based on antimicrobial activity assessment, four most bioactive strains; Polaribacter sp. SU124, Shewanella sp. SU126, Psychrobacter sp. SU143 and Psychrobacter sp. SU137, were prioritized for a comparative and untargeted metabolomics analysis using feature-based molecular networking. These findings highlight the biotechnological potential of P. periphylla-associated microbiota.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wang, Zhuo; Chung, Ailsa; Steinhage, Daniel; Parrenin, Frédéric; +2 Authors

    Here, we present internal reflection horizons (IRHs) picked in radargrams in the Dome Fuji region, Antarctica based on 22 radar profiles collected with the airborne radio-echo sounding (RES) system of the AWI mounted on its Basler BT-67 aircraft during the 2016/17 Antarctic season. 6 or 7 IRHs are traced in each radargram. The IRHs are then conneced to the Dome Fuji ice core and used to transfer the age-depth scale from the ice core to the large Dome Fuji region. The age-depth information of the IRHs are then input to a 1D ice flow model to recostruct the age field in the lower part of ice, and to evaluate basal thermal state.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cornelius, Annika; Buschbaum, Christian; Khosravi, Maral; Waser, Andreas M; +2 Authors

    In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host. We collected the data in a laboratory experiment. Here, snails (Littorina littorea) infected with a parasite (Himasthla elongata) were kept in two different treatments (with predation risk and control). Subsequently, the excreted cercariae were collected as data. The experiments were conducted at the Wadden Sea Station of the Alfred Wegener Institute in List, Sylt, Germany. We sampled the snails at the the Danish coast of the Baltic Sea (Jütland, Arosund; 55*15'45.8'N 9*42'39.2'E). Snails had a shell height of 14-18mm corresponding to an age of two years. Infection status were screened at the laboratory. The crabs for the predation cue were sampled at the Oddewatt, List Sylt (German, Wadden Sea). Only male crabs with a size og 20-30mm catapace width were sampled. The blue mussels were sampled at the west coast of Sylt (Wenningstedt beach) were trematode infection do not occur naturally (confirmed by screening 50 mussels). Mussel shell length wars 25-30mm. Sampling of the experimental organisms: Mytilus edulis (latitude:54.937.600, longitude: 8.312.915); Littorina littorea (latitude55.262.722:longitude:9.710.889 ) and Hemigrapsus takanoi (latitude:55.028.713longitude:8.434.260 ).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
1,579 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Orth, Donald J.;

    These supplementary teaching resources align to the open textbook, Fish, Fishing, and Conservation which is a 389-page, peer-reviewed publicly-available, openly-licensed textbook intended for undergraduate students who are exploring majors in Fish & Wildlife. It is also relevant to a general audience or for use in courses which explore social and ethical aspects of fish, fishing and conservation. The open textbook, Fish, Fishing, and Conservation, is freely available at https://doi.org/10.21061/fishandconservation Supplementary teaching resources include a sample course syllabus, schedule, and a variety of assignments. Individuals who wish to share their materials relevant to teaching in this subject area are encouraged to join and share their openly-licensed resources via the Fish, Fishing, and Conservation Instructor Group in OERCommons Are you reviewing or adopting Fish, Fishing, and Conservation for a course? Please help us understand your use by completing this form https://bit.ly/fishandconservation_interest VIVA (Virtual Library of Virginia)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pasquale Pagano; Sara Pittonet; Federico Drago; Maria Giuffrida;

    There are several research infrastructures or other data services running in Europe that cover a multitude of marine-related sciences, providing specific datasets coming from observations collected with different methods. These infrastructures constitute a diverse world, each looking at a piece of the big picture, sometimes hindering collaboration and data sharing. Blue-Cloud aims to overcome fragmentation and build a bridge between thematic science clusters - such as marine, climate, food and agriculture sciences - and EOSC, creating a data federation and providing a common access to a so-called thematic EOSC for marine data. By connecting leading marine data management infrastructures with horizontal e-infrastructures, the project aims to maximise the exploitation of data resources available from different sources. The Blue-Cloud framework consists of two major technical components: (1) a Blue-Cloud Data Discovery and Access service, already presented in a previous EOSC in practice story, to serve federated discovery and access to blue data infrastructures, and (2) a Blue-Cloud Virtual Research Environment (VRE) to provide computing platforms and analytical services facilitating the collaboration between researchers, which is detailed hereafter. The Blue-Cloud VRE is powered by the D4Science Infrastructure. [M. Assante et al. (2019) Enacting open science by D4Science. Future Gener. Comput. Syst. 101: 555-563 10.1016/j.future.2019.05.063 ] The full list of EOSC in practice stories is available here

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility45
    visibilityviews45
    downloaddownloads37
    Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Love, Connor;

    The creation, movement, and consumption of distinct biomolecules by marine organisms has far reaching implications regarding ecosystem material and energy flow and how we manage the marine environment. Lipids are ubiquitous, energy rich biomolecules that are essential for all life and are used for cell membrane structure, energy storage and serve as useful indicators for ecosystem and food web dynamics. In this dissertation, the flow of specific lipid biomolecules through multiple marine environments is measured, explored, and clarified to better understand biogeochemical cycles, marine food webs and ecosystem connectivity. In the first chapter of my dissertation, I measure, quantify, and close the loop of the open ocean microbial hydrocarbon cycle, with implications for priming effects of the ocean microbiome to oil spills. It is estimated that seeps, spills, and other oil pollution introduce ~ 1.3 million tons (1.3 Tg) of hydrocarbons into the ocean each year. Additionally, it is known that globally abundant marine cyanobacteria Prochlorococcus and Synechococcus which account for ~25% of ocean net primary production also produce hydrocarbons from fatty acids. But little is known about the size, turnover and fate of these cyanobacterial hydrocarbons and the implications for the ocean’s microbiome response to future oil spills. From a research expedition in the North Atlantic, I report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane which correlates tightly with fluorescence and Prochlorococcus abundance in oligotrophic waters. Using chemical and isotopic tracing I find that pentadecane production and diel dynamics mainly occurs in the lower euphotic zone at the deep chlorophyll maximum. I estimate the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100 to 500-fold, with cyanobacteria producing ~ 130-650 million tons of pentadecane per year. Analysis of sinking particles at the base of the euphotic zone show that nearly all pentadecane (< 0.001 % remaining) is consumed within the euphotic zone, suggesting near complete consumption of these hydrocarbons by hydrocarbon degrading microbes. These findings characterize a wide-spread microbial hydrocarbon cycle that selectively primes the ocean’s microbiome with long-chain alkanes. In the second chapter of my dissertation, I conduct a large-scale feeding experiment on a symbiotic reef-building coral (Stylophora pistillata) in the Red Sea to clarify fatty acid and isotopic biomarker patterns of coral heterotrophy for use in the field. Coral heterotrophy is an often-overlooked facet of coral nutrition that provides essential nutrients that help corals resist and recover from thermally induced bleaching that is degrading reef ecosystems around the world due to rising global ocean temperatures. Yet, methods for measuring coral mixotrophy, the balance between organic matter contributions to the coral host from autotrophic photo endosymbionts and heterotrophy on particles and plankton have typically been too coarse to elucidate source contributions. Through my experiment I show that fatty acids and isotopic biomarkers reliably separate experimental and reef nutritional source groups (heterotrophic or autotrophic). I show that heterotrophic fatty acid biomarkers are reliably recorded into coral host and symbiont tissues, with a divergent metabolic pattern of autotrophic biomarkers as feeding increases due to positive feedback of heterotrophy on the in hospite photo symbiont population. Additionally, I show that nitrogen and essential fatty acids are preferentially recorded into coral tissue while most heterotrophic carbon is respired or exuded as mucous; this shows that the use of bulk carbon isotopes as a feeding proxy for the last ~ 40 years is largely underestimating the contribution of heterotrophy to the trophic ecology of reef building corals. Overall, this finding underscores a connectivity between oceanic phyto- and zooplankton and reef-building coral. In the third chapter of my dissertation, I explore the mixotrophic differences of divergent bleaching responses of Acropora hyacinthus colonies on the forereef of Mo’orea during the 2019 mass bleaching event. During this bleaching event, all colonies of A. hyacinthus on the deep forereef (14 m) bleached and recovered, while colonies on the shallow forereef (5 m) near the reef crest resisted bleaching entirely, despite the same temperature stress. Using fatty acid and isotopic biomarkers I show through several lines of evidence that bleaching resistant colonies near the reef crest were likely consuming more particulate organic matter than deep forereef colonies. This conclusion is supported by isotopic feeding proxies, less isotopic niche overlap of the host and symbiont of resistant colonies, and larger proportions of putative POM fatty acid biomarkers in the host of resistant colonies relative to recovered colonies. This interpretation is in line with observations that benthic communities on the reef crest are a net sink of oceanic POM and that increased reliance on heterotrophy is associated with bleaching resistance. These data show the vital importance of reef environment, coral heterotrophy, and planktonic subsidies in structuring bleaching response of corals in a warming ocean and ultimately show that the reef crest may serve as a potent zone for reseeding coral populations after marine heat waves.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Herzschuh, Ulrike; Böhmer, Thomas; Li, Chenzhi; Cao, Xianyong;

    This dataset presents temperature and precipitation reconstruction from pollen records of the Northern Hemisphere. Most of the pollen proxy data where retrieved from the Neotoma Paleoecology Database (https://www.neotomadb.org/), with additional data from Cao et al. (2020; https://doi.org/10.5194/essd-12-119-2020), Cao et al. (2013, https://doi.org/10.1016/j.revpalbo.2013.02.003) and our own collection. Mean July temperature, annual mean temperature and annual precipitation were reconstructed for 2593 sites (1030 sites in North America, 1075 sites in Europe and 488 sites in Asia) using the full modern temperature and precipitation range, as well as using a "tailored" version, where we restricted a climate variable range to reconstruct the respective other climate variable in order to minimize the impact of co-correlation. Statistics on the used calibration sets (i.e. all samples within 2000 km distance to the fossil pollen records) are also provided, as well as results from the significance test of the reconstructions sensu Telford & Birks (2011). The data collection is subdivided in 4 geographical regions: The European, the Asian and for North America the Western North American and the Eastern North American sector. We complement the data publication by providing the source information on the references (most data are related to Neotoma) as a table linked to each Dataset ID, The Dataset- and Site-IDs are from Neotoma if the data sets are derived from the Neotoma repository. In case of our own data collection efforts (Cao et al. (2020), Cao et al. (2013) and our own data) we used the already published PANGAEA event names in case they are related to the data or created own site names with referencing to geographical regions similar to the Neotoma data naming principle.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tsai, Brandon Te-hao;

    Understanding what factors shape the magnitude of divergence under rapid evolution is critical. Phenotypic divergence, specifically, can be influenced by selective forces such as the environment (climate, geographic distance) as well as non-selective forces (genetic composition of the founding population). Threespine sticklebacks provide a unique opportunity to study the magnitude of divergence under rapid evolution. Marine sticklebacks independently colonized freshwater habitats at the end of the last ice age (~12,000 years ago) generating multiple replicate pairs that represent a natural experiment. However, studies rely on untested assumptions that marine sticklebacks are not phenotypically varied and are unchanged from their ancestors. Here, we test how differential environmental conditions impact the estimated magnitude of phenotypic divergence and parallelism of independent freshwater stickleback populations. We find that marine variation is comparable to freshwater variation. Importantly, the inferred magnitude of phenotypic divergence of each freshwater population is dependent on marine sampling location. The geographic distance and environmental similarity between the marine and freshwater pairs explain a significant degree of variance. When estimating the degree of parallelism among freshwater pairs, marine reference also affects the inferred magnitude. The observed pattern suggests the choice of reference population and its geographic distance are important aspects to consider when estimating freshwater divergence and parallelism. Results also implicate a signature of local adaptation and/or isolation by distance. We provide recommendations for choosing ecologically relevant marine references in future studies on this important evolutionary model system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Xue, Carolyn;

    Widespread overuse and large-scale production of antibiotics create antibiotic pollution, disrupting environmental microbiota and creating a public health risk. Highly urbanized coastal environments can be under high impact from antibiotic pollution from many trails of polluted effluents and runoff. The city of Long Beach is one such coastal area under high impact, since it is highly urban, industrialized, and experiences frequent sewage spills. We collected water samples from the LA River in a transect running southwest into the San Pedro Channel in order to investigate (1) how does strength of antibiotic resistance change as distance from shore increases, and (2) does antibiotic resistance correlate with composition of the bacterial community. There was no consistent relationship between strength of antibiotic resistance and distance from shore. Instead, we found that bacteria from the Pacific Ocean showed higher antibiotic resistance than bacteria from the LA River in five out of eleven antibiotic treatments. We also found that the alpha diversity of bacterial communities was lower in the LA River samples compared, and alpha diversity positively correlated with strength of antibiotic resistance in four antibiotic treatments. Our findings highlight how prevalence of antibiotic pollution does not always follow a distance dilution, as well as the need for understanding the strength behind antibiotic resistance in marine bacteria.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Orejas, Covadonga; Antón-Sempere, Silvia; Terrón-Singler, Alexis; Grau, Amalia;

    This bundled publication contains data sets on 1) Polyp size and sex: biometric data of polyps from Dendrophyllia ramea, as well as the sex of each analysed polyp; 2) Oocyte per mesentery: number of oocytes per analysed mesentery; 3) Oocytes per polyp: these data have been used to calculate fecundity; 4) Oocyte developmental stages: oocyte sizes and developmental stage are included; 5. Spermatic cysts: spermatic cysts sizes and developmental stage are included. A total of three polyps per each coral colony have been analysed by histological methods and a total of three coral colonies have been analysed for each sampling month: February 2018, May 2017, July 2018 and October 2017. Samples have been collected in the protected area of Punta La Mona (Granada, Alborán Sea, western Mediterranean) between 30 and 37 meters depth by scuba diving.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oppong-Danquah, Ernest; Miranda, Martina; Blümel, Martina; Tasdemir, Deniz;

    This study aimed at isolating microorganisms associated with the mesopelagic jellyfish Periphylla periphylla collected in Irminger Sea at a depth of 325 m in July 2020. Three different solid cultivation media; Hastings, Marine agar and Wickerham media were used for the isolation of the associated microorganisms. A total of 43 bacteria were isolated from the inner and outer surfaces of the umbrella of P. periphylla, but unfortunately, no fungal strain was isolated. Isolates were further identified by Sanger sequencing of the 16S rRNA gene, and based on phylogenetic distinctiveness (differences in closest relative species according to the nucleotide BLAST), 16 bacteria belonging to 8 different genera were selected and subjected to an OSMAC cultivation regime approach using liquid and solid marine broth and glucose– yeast–malt media. After 7 days of cultivation, cultures were extracted with ethyl acetate and assessed for antimicrobial activity against fish and human pathogens. Based on antimicrobial activity assessment, four most bioactive strains; Polaribacter sp. SU124, Shewanella sp. SU126, Psychrobacter sp. SU143 and Psychrobacter sp. SU137, were prioritized for a comparative and untargeted metabolomics analysis using feature-based molecular networking. These findings highlight the biotechnological potential of P. periphylla-associated microbiota.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wang, Zhuo; Chung, Ailsa; Steinhage, Daniel; Parrenin, Frédéric; +2 Authors

    Here, we present internal reflection horizons (IRHs) picked in radargrams in the Dome Fuji region, Antarctica based on 22 radar profiles collected with the airborne radio-echo sounding (RES) system of the AWI mounted on its Basler BT-67 aircraft during the 2016/17 Antarctic season. 6 or 7 IRHs are traced in each radargram. The IRHs are then conneced to the Dome Fuji ice core and used to transfer the age-depth scale from the ice core to the large Dome Fuji region. The age-depth information of the IRHs are then input to a 1D ice flow model to recostruct the age field in the lower part of ice, and to evaluate basal thermal state.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cornelius, Annika; Buschbaum, Christian; Khosravi, Maral; Waser, Andreas M; +2 Authors

    In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host. We collected the data in a laboratory experiment. Here, snails (Littorina littorea) infected with a parasite (Himasthla elongata) were kept in two different treatments (with predation risk and control). Subsequently, the excreted cercariae were collected as data. The experiments were conducted at the Wadden Sea Station of the Alfred Wegener Institute in List, Sylt, Germany. We sampled the snails at the the Danish coast of the Baltic Sea (Jütland, Arosund; 55*15'45.8'N 9*42'39.2'E). Snails had a shell height of 14-18mm corresponding to an age of two years. Infection status were screened at the laboratory. The crabs for the predation cue were sampled at the Oddewatt, List Sylt (German, Wadden Sea). Only male crabs with a size og 20-30mm catapace width were sampled. The blue mussels were sampled at the west coast of Sylt (Wenningstedt beach) were trematode infection do not occur naturally (confirmed by screening 50 mussels). Mussel shell length wars 25-30mm. Sampling of the experimental organisms: Mytilus edulis (latitude:54.937.600, longitude: 8.312.915); Littorina littorea (latitude55.262.722:longitude:9.710.889 ) and Hemigrapsus takanoi (latitude:55.028.713longitude:8.434.260 ).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/