- home
- Advanced Search
783 Research products, page 1 of 79
Loading
- Other research product . Other ORP type . 2022 . Embargo End Date: 01 Jan 2070Open Access EnglishAuthors:Galimany, E. (Eva); Hernandis, S. (Sebastián); Hernández-Contreras, A. (Ángel); Gómez-Martínez, F.J. (Francisco José); Albentosa, M. (Marina); Da-Costa, F. (Fiz);Galimany, E. (Eva); Hernandis, S. (Sebastián); Hernández-Contreras, A. (Ángel); Gómez-Martínez, F.J. (Francisco José); Albentosa, M. (Marina); Da-Costa, F. (Fiz);
handle: 10508/15914
Publisher: Centro Oceanográfico de VigoCountry: Spainadd Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Lecture . 2022 . Embargo End Date: 31 Dec 2025Open Access Spanish; CastilianAuthors:Fernández, I. (Ignacio);Fernández, I. (Ignacio);
handle: 10508/16061
Publisher: Centro Oceanográfico de VigoCountry: Spainadd Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Lecture . 2022Open AccessAuthors:Bode, A. (Antonio);Bode, A. (Antonio);
handle: 10508/15729
Publisher: Centro Oceanográfico de A CoruñaCountry: SpainInvited lecture. Online live Session 2 Summary: trophic levels: a measure of functional diversity stable isotope tools: bulk vs. compound-specific analyses the basis: differential isotopic fractionation trophic indicators: trophic position, baselines, and much more application examples progress: multitrophic models, fingerprinting MCIN/AEI/10.13039/501100011033
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . 2022Open Access EnglishAuthors:Iyer, Ram Balam;Iyer, Ram Balam;Publisher: eScholarship, University of CaliforniaCountry: United States
Time and energy are finite resources in any environment, and how and when organisms use their available resources to survive and reproduce is the crux of life history theory (Gadgil and Bossert 1970; Balon 1975; Stearns 1976). The different survival strategies used by animals are often shaped by their environment in addition to their biology (Winemiller and Rose 1992), which allows for exploration into biological variability when environmental factors are known. For this reason, the Line Islands in the Central Pacific provide an ideal location to perform observational studies due to their unique productivity gradient and fish assemblage structures across the island chain (Sandin et al. 2008; DeMartini et al. 2008; Fox et al. 2018; Zgliczynski et al. 2019). Many of the world’s coral reefs are in remote regions that lack monitoring programs or even local populations, so conducting ecological surveys on fish communities in these regions can require extensive amounts of time, energy, resources and people. The inherent variability an environment exerts on the many factors that contribute to growth over a lifetime make it difficult to generate a directly proportional formula that calculates age. A novel age estimation method was developed that utilizes in-situ visual census data to estimate the age of fishes, and as a case study, several fish were chosen as representative species to explore its capabilities. Through this process, new ecological information and insight can be gained about the age structures of fish populations both between and throughout the Line Islands.
- Other research product . 2022Open AccessAuthors:Expósito N; Rovira J; Sierra J; Gimenez G; Domingo JL; Schuhmacher M;Expósito N; Rovira J; Sierra J; Gimenez G; Domingo JL; Schuhmacher M;Country: Spain
Microplastics (MPs) are accessible for organisms with active filter feeding strategies, as are many marine molluscs, which live attached or semi-buried in sediments. In the present study, MPs (from 0.02 to 5 mm) concentration, morphology, and composition were determined in consumed mollusc species of the Catalan coast (NW Mediterranean Sea). Microplastic concentrations, morphologic characteristics and composition were studied according to species, catchment zones and depuration condition. Finally, human intake of MPs through molluscs' consumption was determined. >2300 individuals were analysed, being 1460 MPs extracted and their size, and polymeric composition registered. Big oysters and mussels showed the highest MPs concentration by individual, with levels of 22.8 ± 14.4 and 18.6 ± 23.0 MPs/individual, respectively. Mean annual MPs (≥20 μm) consumption for adult population was estimated in 8103 MPs/year, with a 95th percentile of 19,418 MPs/year. It suggests that the consumption of molluscs is an important route of MPs exposure for the Catalan population.
- Other research product . 2022Open Access EnglishAuthors:Labare, Michaela Faith;Labare, Michaela Faith;Publisher: eScholarship, University of CaliforniaCountry: United States
Understanding fish diversity patterns is critical for fisheries management amidst overfishing and climate change. Fish egg surveys have been used to characterize pelagic spawning fish communities, estimate biomass, and track population trends in response to perturbations. Environmental DNA (eDNA) metabarcoding has been implemented to rapidly and non-invasively survey marine ecosystems. To understand the efficacy of eDNA metabarcoding for assessing pelagic spawning fish community composition, concurrent eDNA metabarcoding and fish egg DNA barcoding off Scripps Institution of Oceanography’s Pier (La Jolla, CA) were conducted. Both methods revealed seasonal patterns in agreement with previous fish and fish egg surveys. Species richness was highest in late spring and summer. The presence and spawning of commercially important species and species of conservation concern were detected. Both methods showed overlap for pelagic spawning fishes for broadcast spawners, schooling fish, and locally abundant species. Some actively spawning species were not co-detected with eDNA, likely due to different sampling strategies, taxonomic biases, and abiotic/biotic factors influencing eDNA transport, shedding, and degradation. We identified key advantages and disadvantages of each method. Fish egg barcoding provided information on spawning trends but did not detect taxa with alternate reproduction strategies. Metabarcoding eDNA detected species not found in fish egg sampling, including demersal and viviparous bony fishes, non-spawning adults, Chondrichthyan, and Mammalian species, but missed abundant pelagic fish eggs. This study demonstrates that DNA barcoding of fish eggs and eDNA metabarcoding work best in tandem as each method identified unique fish taxa and provided complementary ecological and biological insight.
- Other research product . 2022Open Access EnglishAuthors:Cohen, Rebecca Emily;Cohen, Rebecca Emily;Publisher: eScholarship, University of CaliforniaCountry: United States
The western North Atlantic is a dynamic region characterized by the Gulf Stream western boundary current and inhabited by a diverse host of odontocete, or toothed whale, top predators. Their habitats are highly exploited by commercial fisheries, shipping, marine energy extraction, and naval exercises, subjecting them to a variety of potentially harmful interactions. Many of these species remain poorly understood due to the difficulties of observing them in the pelagic environment. Their habitat utilization and the impacts of anthropogenic activities are not well known. Over the past decade, passive acoustic data has become increasingly utilized for the study of a wide variety of marine animals, and offers several advantages over traditional line-transect visual survey methods. Passive acoustic devices can be deployed at offshore monitoring sites for long periods of time, enabling detection of even rare and cryptic species across seasons and sea states, and without altering animal behaviors. Here we utilized a large passive acoustic data set collected across a latitudinal habitat gradient in the western North Atlantic to address fundamental knowledge gaps in odontocete ecology. I approached the problem of discriminating between species based on spectral and temporal features of echolocation clicks by using machine learning to identify novel click types, and then matching these click types to species using spatiotemporal correlates. I was able to identify novel click types associated with short-beaked common dolphins, Risso’s dolphins, and short-finned pilot whales in this way. Next I characterized temporal patterns in presence and activity for ten different species across our monitoring sites at three different temporal scales: seasonal, lunar, and diel. I observed spatiotemporal separation of apparent competitors, and complex behavioral patterns modulated by interactions between the seasonal, lunar, and diel cycles. Finally I investigated the relationships between species presence and oceanographic covariates to predict habitat suitability across the region, and explored niche partitioning between potentially competitive species. The insights gained here significantly advance our understanding of toothed whale ecology in this region, and can be used for more effective population assessments and management in the face of anthropogenic threats and climate change.
- Other research product . 2022Open Access EnglishAuthors:Raja, Maria; Rosell Melé, Antoni;Raja, Maria; Rosell Melé, Antoni;Country: Spain
Unidad de excelencia María de Maeztu CEX2019-000940-M This dataset contains supporting information for "Quantitative link between sedimentary chlorin and sea-surface chlorophyll-a". The dataset consists of global oceanic biogeochemical data from sea-surface, water column and surface sediments. The dataset includes sedimentary chlorin and sea-surface chlorophyll concentration, total organic carbon content, oxygen concentration and mass accumulation rate, among other biogeochemical parameters.
- Other research product . 2022Open Access EnglishAuthors:Berta, Veronica Zsazsa;Berta, Veronica Zsazsa;Publisher: eScholarship, University of CaliforniaCountry: United States
Amines were measured by aerosol mass spectrometry (AMS) and Fourier Transform Infrared (FTIR) spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Both AMS non-refractory (NR) amine ion fragments comprising the AMS CxHyNz family and FTIR non-volatile (NV) amine measured as primary (C-NH2) amine groups typically had greater concentrations in continental air masses than marine air masses. Secondary continental sources of AMS NR amine fragments were identified by consistent correlations to AMS NR nitrate, AMS NR m/z 44, IC non-sea salt potassium, and radon for most air masses. FTIR NV amine group mass concentrations for particles with diameters <1 μm showed large contributions from a primary marine source that was identified by significant correlations with measurements of wind speed, chlorophyll a, seawater dimethylsulfide (DMS), AMS NR chloride, and ion chromatography (IC) sea salt as well as FTIR NV alcohol groups in both marine and continental air masses. FTIR NV amine group mass concentrations in <0.18 μm and <0.5 μm particle samples in marine air masses likely have a biogenic secondary source associated with strong correlations to FTIR NV acid groups, which are not present for <1 μm particle samples. The average seasonal contribution of AMS NR amine fragments and FTIR NV amine groups ranged from 27% primary marine amine and 73% secondary continental amine during Early Spring to 53% primary amine and 47% secondary continental amine during Winter. These results demonstrate that AMS NR and FTIR NV amine measurements are complementary and can be used together to investigate the variety and sources of amines in the marine environment.
- Other research product . 2022Open Access EnglishAuthors:Spies, Brenton Tyler;Spies, Brenton Tyler;Publisher: eScholarship, University of CaliforniaCountry: United States
This project is directed towards implementing aspects of the tidewater goby recovery plan in coordination with, and funded by, the US Fish & Wildlife Service (USFWS) through a Section 6 Cooperative Agreement awarded to the University of California, Los Angeles on May 15, 2015. The primary focus of this dissertation was to developed a quantitative framework to complete a metapopulation viability analysis (MVA) for the endangered tidewater gobies in the genus Eucyclogobius. Modeling tidewater goby metapopulation dynamics is an essential component in constructing long-term management plans rangewide throughout the California Coast. This dissertation examines more closely how these dynamics affect viability, connectivity, and long-term persistence of tidewater goby metapopulations throughout the California coast. In the first chapter of this dissertation, I conducted annual population surveys (2014, 2015, and 2017-2018) in 117 estuaries and lagoons to assess the current health and status of the tidewater gobies in five of the six Recovery Units, spanning from Bodega Bay to San Diego, CA. This massive effort has provided continuous coastal surveys over four years, and over 300 observations, which helped create the framework for a robust and comprehensive presence/absence dataset to help inform metapopulation management and recovery actions. In the second chapter of this dissertation collated all existing rangewide occupancy data, metapopulation descriptors, wetland site characteristics, and repository specimen collections into an open access database. This database will provide critical information relative to the federally endangered tidewater gobies and help inform the metapopulation viability analysis model developed in this study, as well as support continued research on the conservation and management of these incredible fish species and the coastal wetland ecosystems they inhabit. In the third chapter of this dissertation I review the general biology, conservation status, habitat impacts, and metapopulation dynamics of the northern tidewater goby (Eucyclogobius newberryi) and southern tidewater goby (Eucyclogobius kristinae). In addition, I demonstrate the effectiveness of a Bayesian approach to provide a flexible method to generate metapopulation viability analyses and provide a detailed summary of the MVA model framework, including limitations, required corrections, and future amendments that need to be addressed in order to meet the recovery criterion envisioned in the recovery plan.
783 Research products, page 1 of 79
Loading
- Other research product . Other ORP type . 2022 . Embargo End Date: 01 Jan 2070Open Access EnglishAuthors:Galimany, E. (Eva); Hernandis, S. (Sebastián); Hernández-Contreras, A. (Ángel); Gómez-Martínez, F.J. (Francisco José); Albentosa, M. (Marina); Da-Costa, F. (Fiz);Galimany, E. (Eva); Hernandis, S. (Sebastián); Hernández-Contreras, A. (Ángel); Gómez-Martínez, F.J. (Francisco José); Albentosa, M. (Marina); Da-Costa, F. (Fiz);
handle: 10508/15914
Publisher: Centro Oceanográfico de VigoCountry: Spainadd Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Lecture . 2022 . Embargo End Date: 31 Dec 2025Open Access Spanish; CastilianAuthors:Fernández, I. (Ignacio);Fernández, I. (Ignacio);
handle: 10508/16061
Publisher: Centro Oceanográfico de VigoCountry: Spainadd Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Lecture . 2022Open AccessAuthors:Bode, A. (Antonio);Bode, A. (Antonio);
handle: 10508/15729
Publisher: Centro Oceanográfico de A CoruñaCountry: SpainInvited lecture. Online live Session 2 Summary: trophic levels: a measure of functional diversity stable isotope tools: bulk vs. compound-specific analyses the basis: differential isotopic fractionation trophic indicators: trophic position, baselines, and much more application examples progress: multitrophic models, fingerprinting MCIN/AEI/10.13039/501100011033
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . 2022Open Access EnglishAuthors:Iyer, Ram Balam;Iyer, Ram Balam;Publisher: eScholarship, University of CaliforniaCountry: United States
Time and energy are finite resources in any environment, and how and when organisms use their available resources to survive and reproduce is the crux of life history theory (Gadgil and Bossert 1970; Balon 1975; Stearns 1976). The different survival strategies used by animals are often shaped by their environment in addition to their biology (Winemiller and Rose 1992), which allows for exploration into biological variability when environmental factors are known. For this reason, the Line Islands in the Central Pacific provide an ideal location to perform observational studies due to their unique productivity gradient and fish assemblage structures across the island chain (Sandin et al. 2008; DeMartini et al. 2008; Fox et al. 2018; Zgliczynski et al. 2019). Many of the world’s coral reefs are in remote regions that lack monitoring programs or even local populations, so conducting ecological surveys on fish communities in these regions can require extensive amounts of time, energy, resources and people. The inherent variability an environment exerts on the many factors that contribute to growth over a lifetime make it difficult to generate a directly proportional formula that calculates age. A novel age estimation method was developed that utilizes in-situ visual census data to estimate the age of fishes, and as a case study, several fish were chosen as representative species to explore its capabilities. Through this process, new ecological information and insight can be gained about the age structures of fish populations both between and throughout the Line Islands.
- Other research product . 2022Open AccessAuthors:Expósito N; Rovira J; Sierra J; Gimenez G; Domingo JL; Schuhmacher M;Expósito N; Rovira J; Sierra J; Gimenez G; Domingo JL; Schuhmacher M;Country: Spain
Microplastics (MPs) are accessible for organisms with active filter feeding strategies, as are many marine molluscs, which live attached or semi-buried in sediments. In the present study, MPs (from 0.02 to 5 mm) concentration, morphology, and composition were determined in consumed mollusc species of the Catalan coast (NW Mediterranean Sea). Microplastic concentrations, morphologic characteristics and composition were studied according to species, catchment zones and depuration condition. Finally, human intake of MPs through molluscs' consumption was determined. >2300 individuals were analysed, being 1460 MPs extracted and their size, and polymeric composition registered. Big oysters and mussels showed the highest MPs concentration by individual, with levels of 22.8 ± 14.4 and 18.6 ± 23.0 MPs/individual, respectively. Mean annual MPs (≥20 μm) consumption for adult population was estimated in 8103 MPs/year, with a 95th percentile of 19,418 MPs/year. It suggests that the consumption of molluscs is an important route of MPs exposure for the Catalan population.
- Other research product . 2022Open Access EnglishAuthors:Labare, Michaela Faith;Labare, Michaela Faith;Publisher: eScholarship, University of CaliforniaCountry: United States
Understanding fish diversity patterns is critical for fisheries management amidst overfishing and climate change. Fish egg surveys have been used to characterize pelagic spawning fish communities, estimate biomass, and track population trends in response to perturbations. Environmental DNA (eDNA) metabarcoding has been implemented to rapidly and non-invasively survey marine ecosystems. To understand the efficacy of eDNA metabarcoding for assessing pelagic spawning fish community composition, concurrent eDNA metabarcoding and fish egg DNA barcoding off Scripps Institution of Oceanography’s Pier (La Jolla, CA) were conducted. Both methods revealed seasonal patterns in agreement with previous fish and fish egg surveys. Species richness was highest in late spring and summer. The presence and spawning of commercially important species and species of conservation concern were detected. Both methods showed overlap for pelagic spawning fishes for broadcast spawners, schooling fish, and locally abundant species. Some actively spawning species were not co-detected with eDNA, likely due to different sampling strategies, taxonomic biases, and abiotic/biotic factors influencing eDNA transport, shedding, and degradation. We identified key advantages and disadvantages of each method. Fish egg barcoding provided information on spawning trends but did not detect taxa with alternate reproduction strategies. Metabarcoding eDNA detected species not found in fish egg sampling, including demersal and viviparous bony fishes, non-spawning adults, Chondrichthyan, and Mammalian species, but missed abundant pelagic fish eggs. This study demonstrates that DNA barcoding of fish eggs and eDNA metabarcoding work best in tandem as each method identified unique fish taxa and provided complementary ecological and biological insight.
- Other research product . 2022Open Access EnglishAuthors:Cohen, Rebecca Emily;Cohen, Rebecca Emily;Publisher: eScholarship, University of CaliforniaCountry: United States
The western North Atlantic is a dynamic region characterized by the Gulf Stream western boundary current and inhabited by a diverse host of odontocete, or toothed whale, top predators. Their habitats are highly exploited by commercial fisheries, shipping, marine energy extraction, and naval exercises, subjecting them to a variety of potentially harmful interactions. Many of these species remain poorly understood due to the difficulties of observing them in the pelagic environment. Their habitat utilization and the impacts of anthropogenic activities are not well known. Over the past decade, passive acoustic data has become increasingly utilized for the study of a wide variety of marine animals, and offers several advantages over traditional line-transect visual survey methods. Passive acoustic devices can be deployed at offshore monitoring sites for long periods of time, enabling detection of even rare and cryptic species across seasons and sea states, and without altering animal behaviors. Here we utilized a large passive acoustic data set collected across a latitudinal habitat gradient in the western North Atlantic to address fundamental knowledge gaps in odontocete ecology. I approached the problem of discriminating between species based on spectral and temporal features of echolocation clicks by using machine learning to identify novel click types, and then matching these click types to species using spatiotemporal correlates. I was able to identify novel click types associated with short-beaked common dolphins, Risso’s dolphins, and short-finned pilot whales in this way. Next I characterized temporal patterns in presence and activity for ten different species across our monitoring sites at three different temporal scales: seasonal, lunar, and diel. I observed spatiotemporal separation of apparent competitors, and complex behavioral patterns modulated by interactions between the seasonal, lunar, and diel cycles. Finally I investigated the relationships between species presence and oceanographic covariates to predict habitat suitability across the region, and explored niche partitioning between potentially competitive species. The insights gained here significantly advance our understanding of toothed whale ecology in this region, and can be used for more effective population assessments and management in the face of anthropogenic threats and climate change.
- Other research product . 2022Open Access EnglishAuthors:Raja, Maria; Rosell Melé, Antoni;Raja, Maria; Rosell Melé, Antoni;Country: Spain
Unidad de excelencia María de Maeztu CEX2019-000940-M This dataset contains supporting information for "Quantitative link between sedimentary chlorin and sea-surface chlorophyll-a". The dataset consists of global oceanic biogeochemical data from sea-surface, water column and surface sediments. The dataset includes sedimentary chlorin and sea-surface chlorophyll concentration, total organic carbon content, oxygen concentration and mass accumulation rate, among other biogeochemical parameters.
- Other research product . 2022Open Access EnglishAuthors:Berta, Veronica Zsazsa;Berta, Veronica Zsazsa;Publisher: eScholarship, University of CaliforniaCountry: United States
Amines were measured by aerosol mass spectrometry (AMS) and Fourier Transform Infrared (FTIR) spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Both AMS non-refractory (NR) amine ion fragments comprising the AMS CxHyNz family and FTIR non-volatile (NV) amine measured as primary (C-NH2) amine groups typically had greater concentrations in continental air masses than marine air masses. Secondary continental sources of AMS NR amine fragments were identified by consistent correlations to AMS NR nitrate, AMS NR m/z 44, IC non-sea salt potassium, and radon for most air masses. FTIR NV amine group mass concentrations for particles with diameters <1 μm showed large contributions from a primary marine source that was identified by significant correlations with measurements of wind speed, chlorophyll a, seawater dimethylsulfide (DMS), AMS NR chloride, and ion chromatography (IC) sea salt as well as FTIR NV alcohol groups in both marine and continental air masses. FTIR NV amine group mass concentrations in <0.18 μm and <0.5 μm particle samples in marine air masses likely have a biogenic secondary source associated with strong correlations to FTIR NV acid groups, which are not present for <1 μm particle samples. The average seasonal contribution of AMS NR amine fragments and FTIR NV amine groups ranged from 27% primary marine amine and 73% secondary continental amine during Early Spring to 53% primary amine and 47% secondary continental amine during Winter. These results demonstrate that AMS NR and FTIR NV amine measurements are complementary and can be used together to investigate the variety and sources of amines in the marine environment.
- Other research product . 2022Open Access EnglishAuthors:Spies, Brenton Tyler;Spies, Brenton Tyler;Publisher: eScholarship, University of CaliforniaCountry: United States
This project is directed towards implementing aspects of the tidewater goby recovery plan in coordination with, and funded by, the US Fish & Wildlife Service (USFWS) through a Section 6 Cooperative Agreement awarded to the University of California, Los Angeles on May 15, 2015. The primary focus of this dissertation was to developed a quantitative framework to complete a metapopulation viability analysis (MVA) for the endangered tidewater gobies in the genus Eucyclogobius. Modeling tidewater goby metapopulation dynamics is an essential component in constructing long-term management plans rangewide throughout the California Coast. This dissertation examines more closely how these dynamics affect viability, connectivity, and long-term persistence of tidewater goby metapopulations throughout the California coast. In the first chapter of this dissertation, I conducted annual population surveys (2014, 2015, and 2017-2018) in 117 estuaries and lagoons to assess the current health and status of the tidewater gobies in five of the six Recovery Units, spanning from Bodega Bay to San Diego, CA. This massive effort has provided continuous coastal surveys over four years, and over 300 observations, which helped create the framework for a robust and comprehensive presence/absence dataset to help inform metapopulation management and recovery actions. In the second chapter of this dissertation collated all existing rangewide occupancy data, metapopulation descriptors, wetland site characteristics, and repository specimen collections into an open access database. This database will provide critical information relative to the federally endangered tidewater gobies and help inform the metapopulation viability analysis model developed in this study, as well as support continued research on the conservation and management of these incredible fish species and the coastal wetland ecosystems they inhabit. In the third chapter of this dissertation I review the general biology, conservation status, habitat impacts, and metapopulation dynamics of the northern tidewater goby (Eucyclogobius newberryi) and southern tidewater goby (Eucyclogobius kristinae). In addition, I demonstrate the effectiveness of a Bayesian approach to provide a flexible method to generate metapopulation viability analyses and provide a detailed summary of the MVA model framework, including limitations, required corrections, and future amendments that need to be addressed in order to meet the recovery criterion envisioned in the recovery plan.