- home
- Advanced Search
29 Research products, page 1 of 3
Loading
- Other research product . Other ORP type . 2022Open Access Dutch; FlemishAuthors:Katharina Biely;Katharina Biely;Publisher: ZenodoProject: EC | SUFISA (635577)
The documents in these folders represent part of the qualitative data collection documentation. Research has been performed in Flanders (Belgium) in 2016 and 2017. Involved stakehodlers were flemish sugar beet farmers, processors as well as other value chain members. Though, the main stakeholders involved were farmers. The raw data cannot be published. Anonymized interview transcripts and focus group transcripts exist. However, as indicated in the informed consent, farmers did not agree to the raw data being published. The codes that resulted from data analysis are in this folder. Interview questions differed slightly from farmer to farmer as follow up questions may have been posed if needed. First interviews were performed, then focus groups were conducted and finally a workshop was organized. The qualitative reserach followed the research strategy and plan determined by the SUFISA project. On the project webpage (https://www.sufisa.eu/) more information can be found.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2022Open Access EnglishAuthors:Katharina Biely;Katharina Biely;Publisher: ZenodoProject: EC | SUFISA (635577)
This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2021Open Access EnglishAuthors:Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;Publisher: ZenodoProject: EC | Blue Cloud (862409), EC | EurofleetsPlus (824077), EC | AtlantECO (862923), EC | JERICO-S3 (871153), EC | NAUTILOS (101000825), EC | ODYSSEA (727277), EC | MISSION ATLANTIC (862428), EC | iAtlantic (818123), EC | EuroSea (862626), EC | ATLAS (678760)
Ten innovative EU projects to build ocean observation systems that provide input for evidence-based management of the ocean and the Blue Economy, have joined forces in the strong cluster ‘Nourishing Blue Economy and Sharing Ocean Knowledge’. Under the lead of the EuroSea project, the group published a joint policy brief listing recommendations for sustainable ocean observation and management. The cooperation is supported by the EU Horizon Results Booster and enables the group to achieve a higher societal impact. The policy brief will be presented to the European Commission on 15 October 2021. The ocean covers 70% of the Earth’s surface and provides us with a diverse set of ecosystem services that we cannot live without or that significantly improve our quality of life. It is the primary controller of our climate, plays a critical role in providing the air we breathe and the fresh water we drink, supplies us with a large range of exploitable resources (from inorganic resources such as sand and minerals to biotic resources such as seafood), allows us to generate renewable energy, is an important pathway for world transport, an important source of income for tourism, etc. The Organisation for Economic Cooperation and Development (OECD) evaluates the Blue Economy to currently represent 2.5% of the world economic value of goods and services produced, with the potential to further double in size by 2030 (seabed mining, shipping, fishing, tourism, renewable energy systems and aquaculture will intensify). However, the overall consequences of the intensification of human activities on marine ecosystems and their services (such as ocean warming, acidification, deoxygenation, sea level rise, changing distribution and abundance of fish etc.) are still poorly quantified. In addition, on larger geographic and temporal scales, marine data currently appear fragmented, are inhomogeneous, contain data gaps and are difficult to access. This limits our capacity to understand the ocean variability and sustainably manage the ocean and its resources. Consequently, there is a need to develop a framework for more in-depth understanding of marine ecosystems, that links reliable, timely and fit-for-purpose ocean observations to the design and implementation of evidence-based decisions on the management of the ocean. To adequately serve governments, societies, the sustainable Blue Economy and citizens, ocean data need to be collected and delivered in line with the Value Chain of Ocean Information: 1) identification of required data; 2) deployment and maintenance of instruments that collect the data; 3) delivery of data and derived information products; and 4) impact assessment of services to end users. To provide input to the possible future establishment of such a framework, ten innovative EU projects to build user-focused, interdisciplinary, responsive and sustained ocean information systems and increase the sustainability of the Blue Economy, joined forces in a strong cluster to better address key global marine challenges. Under the lead of the EuroSea project, the group translated its common concerns to recommendations and listed these in the joint policy brief ‘Nourishing Blue Economy and Sharing Ocean Knowledge. Ocean Information for Sustainable Management.’. Following up on these recommendations will strengthen the entire Value Chain of Ocean Information and ensure sound sustainable ocean management. In this way, the 10 projects jointly strive to achieve goals set out in the EU Green Deal, the Paris Agreement (United Nations Framework Convention on Climate Change) and the United Nations 2021-2030 Decade of Ocean Science for Sustainable Ocean Development. Toste Tanhua (GEOMAR), EuroSea coordinator: “It was great to collaborate with these other innovative projects and make joint recommendations based on different perspectives and expertise.”
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Larsen, Erling; Iñarra, Bruno; Peral, Irene;Larsen, Erling; Iñarra, Bruno; Peral, Irene;Publisher: ZenodoProject: EC | DiscardLess (633680)
This document is the fourth deliverable in work package six (WP6) of the DiscardLess project, which aims to contribute to the gradual elimination of the discards in the European fisheries, in agreement with the reformed Common Fisheries Policy (CFP) of the EU and the implementation of the landing obligation (LO). The LO states that all regulated species shall be landed. This implies developing alternative solutions at land to manage and make best use of Unavoidable Unwanted Catches (UUC). However, the CFP also states that these solutions shall avoid incentivising the targeting of fishing on these UUC. On the other hand, the handling of UUC onboard will increase onboard handling, which is already time consuming and demanding for the crew. This will increase costs. Shortage of storage capacity because of the space needed for UUC onboard may also contribute to reducing income, therefore viable solutions for UUC management are needed to minimise the impact of the LO on the industry. The suggested uses of unavoidable unwanted catches reported in deliverable D6.2. need thus to be economically attractive for the processors and for the fishers and at the same time must avoid creating incentives to the fisheries. The present deliverable 6.4 looks into some of the initiatives that have actually already taken place using the UUC as raw-material. To get an overview of the amount of UUC landed and of what would be viable options for the processing industry, and to collect data needed for the cost-benefit analyses of the options, many interviews were performed in the three countries of Denmark, France and Spain. The overall conclusion of all the interviews is that no product is currently made from a single source of UUC, but the landed UUC are integrated in the raw-material stream of the processing industries, especially fish meal and fish oil industries. Box 1: Report Highlights There is a broad range of possibilities to valorise UUC fish and fish compounds, however, not all the solutions are able to cope with the huge variability of the expected UUC landings. The LO states that only UUC above Minimum Conservation Reference Size (MCRS) can be used for human consumption. There is a need for designing new fish products that avoid incentivising the catching of undersized fish, and, at the same time, avoid affecting negatively the existing markets. A more in-depth analysis of the economic feasibility of some of the valorisation options for different UUC fractions in different scenarios (D6.2) has been performed. For the Bay of Biscay case study (BoB-CS), some fish species as mackerel, horse mackerel and blue whiting have important volumes of discards due to their low commercial value. They are thus considered as UUC for which better commercialization and consumption could be enhanced by developing new seafood products or concepts. Also, in the Bay of Biscay, there is an important amount of hake under MCRS that can’t be used in direct human consumption but can be very valuable for the production of food ingredients such as flavouring agents. Finally, the production of fishmeal and fish oil used for animal feed, mainly for aquaculture, is the most common use of fish by-products and is a straightforward option for the treatment of UUC when there is an available facility nearby. The feasibility study indicates that the proposed solutions are economically feasible within the scope of the study even at low price. The North Sea case study describes the activities taking place in the Danish port of Hanstholm, with a case study on the fishery targeted at plaice. Several interviews with relevant buyers of the UUC were conducted and their evaluation is presented. Box 2: The methods/approaches followed The expected amount of potential UUC in the different CS were quantified based on current discards data, and the most favourable valorisation options were selected based on their economic feasibility. For various solutions the economic analysis was performed through calculation of the Benefit-Cost Ratio (BCR), Net Present Value (NPV), Internal Return Rate (IRR), etc. Due to the important variation of the amount of UUC foreseen, several scenarios were evaluated. Furthermore, the calculation of UUC price range was performed to reach a “non incentivising” scenario. The North Sea case study is based on personal interviews with relevant persons from the processing and final product links in the value chain. Box 3: How these results can be used and by who? The results from the economic evaluation of different valorisation option can be used by: Research centres to contrast different solutions and compare with its own Fishermen organization willing to evaluate the value of their UUC Local companies: fish processing industries, “waste” managers looking for improving their fish by products or the UUC Investor willing to start a new business Local administration bodies to develop integrated valorisation plans for discards Policy makers to promote the implementation of selected strategies In general, the economic feasibility of a technically viable solution is of great interest for any actor of the chain looking for a solution to minimize the economic impact of the LO application. Box 4: Policy Recommendations Due to economic viability of the proposed valorisation schemas for UUC can be proposed for the definition of best available techniques. Changes in the CFP regarding proper on board handling and storage of UUC can help obtain more value from these fractions.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Savina, Marie; Ulrich, Clara; Borges, Lisa; Reid, David; Quetglas, Antoni; Guijarro, Beatriz; Massutí, Enric; Vaz, Sandrine; Jadaud, Angelique; Robert, Marianne; +10 moreSavina, Marie; Ulrich, Clara; Borges, Lisa; Reid, David; Quetglas, Antoni; Guijarro, Beatriz; Massutí, Enric; Vaz, Sandrine; Jadaud, Angelique; Robert, Marianne; Vermard, Youen; Morato, Telmo; Fauconnet, Laurence; Afonso, Pedro; Andonegi, Eider; Prellezo, Raul; Campbell, Neill; Tsikliras, Athanasios; Triantaphyllidis, George; Argyrou, Ioanna;Publisher: ZenodoProject: EC | DiscardLess (633680)
The Common Fisheries Policy of the European Union was reformed in 2013 to improve the conservation of marine biological resources and the viability of the fishing sector and reduce unsustainable fishing practices (European Union 2013). One of the cornerstones of the reform is Article 15 (termed the Landing Obligation, LO), stipulating the obligation to bring to land all catches of quota- or size-regulated species with the overall aim to gradually eliminate discards. The shift of focus from landed catches to all catches (i.e. including discards) in the current CFP has had a number of wide-ranging implications on the scientific ecological knowledge and on the ways the scientific community is providing advice on fishing opportunities. Article 15, paragraph 2(b), of the CFP describes an exemption from the Landing Obligation for “species for which scientific evidence demonstrates high survival rates, taking into account the characteristics of the gear, of the fishing practices and of the ecosystem”. This provision has sparked a high interest in discard survival assessments and mobilised Member States and fishing industry representative organisations. The STECF a well as the dedicated ICES group WKMEDS have been heavily involved in providing guidance and developing protocols on how to quantify discard survival robustly in the early stages. Spanning from the Mediterranean to the Baltic, more than 20 studies have been carried out all over Europe between 2013 and 2018 and assessed by the STECF. Generating robust evidence on discard survival estimates that is representative of a fishery still remains challenging. Defining what “high survival” means has also been challenging. The Landing Obligation has rendered the provision of scientific advice more complex to perform and quality-check, and more difficult to formulate. Since 2015, two main changes have been triggered in the ICES process, involving the way catch data are collected and the way forecasts are performed and presented. Changes in catch data have emerged from the need to quantify and use new categories, i.e. Landings below minimum conservation reference size and Logbook Registered Discard). Conceptual decisions must be made on how to sample, monitor and include these catch components in the stock assessment. Until now however, the data sent to ICES for these new categories have remained negligible. In theory, the landing obligation would ensure that all catches would be landed, and a single catch advice would suffice. In practice, this poses a number of quantitative challenges, linked to the facts that: i) discarding still takes place and cannot be ignored; and ii) legal provisions (e.g. high survivability, de minimis and predator damage fish) in article 15 mean that the landing obligation is only partially applicable. Finally, the phased implementation together with incomplete discard data have made the calculation of TAC uplift particularly challenging. On the management side, TACs have been adjusted to facilitate the implementation of the LO, although overall, discarding practices have little changed in Europe to date. This may well lead to counterproductive increases in fishing mortality. The final section summarises the situation in the DiscardLess case studies, providing updated discard plans. No significant changes have been observed over the 2015-2018 period due to the implementation of the the LO, in the discarding patterns and volumes. An exception to that would be in the North Sea and west of Scotland, haddock, and to a lesser extent North Sea cod and Saithe (in the west of Scotland only) for which discard volumes have decreased.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Ulrich, Clara;Ulrich, Clara;Publisher: ZenodoProject: EC | DiscardLess (633680)
This deliverable provides an overview of the various Discard Mitigation Strategies (DMS) that have been analysed and investigated in the various case studies. The DMSs are proposed and examined as case specific approaches to support the implementation of the European Landing Obligation (LO). The DMSs represent potential approaches to reduce unvanted catches through fishing gear technology (WP3) changes in fishing patterns (WP4), by finding efficient solutions for handling unavoidable unwanted onboard (WP5), and through identifying existing and novel ways to utilize unwanted catches (WP6). This deliverable represents thus a synthesis of the work developed in these four “innovation” Work Packages, summarised by region. The technical details of the various approaches can be found in the corresponding deliverables from these WPs and where applicable, in scientific publications. The work has been diverse, and not all tasks / work package have been performed in each case study. But in every case studies, significant amounts of new knowledge have been developed about the possible technical and tactical approaches to reduce discards and/or to best utilise them in the value chain. A number of approaches are specific to a given issue in a given case study, but there are also many commonalities and some developments are of interest at a much wider scale than the case study. In the Azores case study, several mitigation measures to the Landing Obligation were assessed for the bottom hook-and-line fisheries. The main technical measures analysed hook size and hook shape. Fishing experiments performed by the DiscardLess team proved that the J-hooks, currently used in the fishery, are better than circle hooks to limit deep-water shark bycatch. The main tactical measures included spatial and vertical/depth avoidance strategies. Spatial avoidance strategies appear of limited potential for blackspot seabream. For deep-water sharks, habitat suitability models showed large distribution, mostly influenced by depth, of most species, and some areas with high number of deep-water sharks. Some areas of high conflict (high number of zero TAC species and high fishing effort) could be identified. The large number of species included within the zero TAC limitation, and the high mobility of some species, render spatial avoidance measures difficult to implement. However,depth avoidance strategies could be more promising. The most promising measure to avoid unwanted catch appears to be the conversion of bottom longlining to handlining., which has also been ongoing for some years. Data collected as part of the DiscardLess project in the Azores were used to support requests for exemptions asked by the Regional Government of the Azores, which were granted in 2018. In the Eastern Mediterranean Sea (Agean Sea) case study, selectivity analyses have shown that both 40mm square and 50mm diamond meshes, compared to the 40mm diamond, would increase escapement and reduce discards. There seems to be little scope for avoidance strategies. Some feasibility analyses were performed for the use of discards at shore. investigating options for small quantities of unwanted landings in small harbours. Two options were suggested: fishmeal/fishoil and silage, using small mobile production plants. However, the initial investments costs are important and the expected returns are limited. In the Western Mediterranean Sea (Balearic Islands / Gulf of Lions), the problem of small-sized fish is mainly related to hake, and discard rates for all other species under the LO are low, except for horse mackerel. Most trawlers from the Balearic Islands have already changed to 40 mm square mesh cod-end, but there is still scope for improving the fishery selectivity and avoid juveniles of hake and mackerel by changing the mesh size and shape or introducing other devices such as panels and grids. Spatial management is widely used and supported in the Mediterranean as a strategy to reduce unwanted catches. Fishers highly support the mapping of juvenile hotspots based on scientific knowledge. DiscardLess developed a number of spatial models in this area, and made them available through Apps consultable via Internet. However, forecasting the impact of discard avoidance management on the sustainability of trawler fisheries is challenging, requiring data, time and trained human-resources. In the Bay of Biscaye case study, most of the work performed by DiscardLess dealt with the use of unwanted catches in the value chain. A catalogue of more than 30 different utllisations was published online, and a systematic approach was developed for a rapid appraisal of which of the possible utilisations might be preferable in a case-by-case approach, depending on the quantity, quality and variability of the expected volumes of unwanted catches, of the existing and required infrastructures and logistics, and of the potential market demand. Some trials were conducted, producing e.g. fish pulp and hydrolysates out of unwanted mackerel and juvenile hake brought to land. Different options for the adequate handling of unwanted catches onboard were proposed, and an automatic system at shore for the identification and classification of unwanted fish that would be landed iced and preserved as normal catches was developed and successfully tested. Some cost-efficient DNA tests for the rapid detection of the presence/absence of a species in a mix were also developed. The mixed nature of the species targeted by demersal fisheries in the Celtic Sea case study results in numerous challenges with the introduction of the Landing Obligation. It is likely that a combination of improved gear selectivity and the adoption of alternative fishing strategies will be required to avoid some of the unwanted catches, and to maximise on fishing opportunities under the LO. There is certainly no one-size fits all solution, and it is likely that gear and behaviour adaptations will mitigate some, but not all problems with choke species and <MCRS fish. DiscardLess provided resources in the form of the selectivity manual and mapping apps for the Celtic Sea, but further collaborations with industry will be required to ensure that future developments of mapping applications meet the needs of interested stakeholders in appropriate formats and time frames. By sharing information on occurrences of undersize fish or spawning aggregations for example, coupled with the information provided in the maps developed in this project, fishers should be much better equipped to avoid choke species and juvenile fish. A major problem in the Celtic Sea remains that due to quota allocation rules as well as stock status, all Member States encounter choke issues, while TAC is globally undershot for a number of species. There is thus some potential for management measures to help mitigate the impacts of the LO. In the Eastern English Channel case study as well, the mixed nature of the fisheries results in numerous challenges with the introduction of the Landing Obligation. One of the main obstacle to gear selectivity improvement is the diversity of species (with large differences in size, shape, market value and management regime), which have made attempts to improve gear selectivity little conclusive in the area. Some „challenge“ experiments to test the Landing Obligation in real conditions showed issues in increasing workload and storage capacity onboard. DiscardLess performed numerous interviews and studies dedicated to the mapping of unwanted catches including some user-friendly maps apps. Fishermen engaged in collaboration for designing adequate knowldge plateforms and scenarios given their limited sets of options for changing fishing zones, given the large amount of other usages of the maritime space in the area. In the North Sea/West of Scotland case study, many different DMS analyses were conducted. but mainly involving desk studies and laboratory experiments rather than actual trials at sea. Major progresses in knowlegde on gear selectivity was brought together and shared, including the publication of numerous factsheets on selective devices and some in-depth analyses of how and why the various elements of a trawls modify selectivity by affecting fish behaviour. Extensive experiments of the use of light were conducted, in order to test the avoidance/attraction reactions of fish to different types of light (color, intensity, flash etc). The results demonstrate some differences in behaviour between different species of fish, which could be a promising avenue for improving catch composition. Several studies were published advancing knowledge on the spatial distribution of choke species and unwanted catches, not least using fine-scale fisheries data coming from different previous Danish pilot trials involving Electronic Monitoring and weighting-packing at sea. Regarding the valoriation of unwanted catches in the value chain, a project was run in collaboration with the harbour of Hanstholm (DK), which established new facilities for the storage and delivery of fish in 2017. At present, most unwated catches and rest raw products are used for feed in the mink farms. The project also foresaw initially the rebuilding of the processing deck of a trawler, but the discard levels in that fishery remain limited and not worth the investment. Finally, a large part of the work performed by DiscardLess in this case study related to the issue of Monitoring, Control and Surveillance. This included both the publication of various studies on experiences and progresses with Fully Documented Fisheries and Electronic Monitoring, and major progresses achieved on the use of DNA technology for the characterisation of species in a mix (e.g. bulk or silage) and the quantification of the relative biomass of each species. This represents a promising break-through for the control and traceability of unanted catches in the value chain. Alltogether, important progresses in scientific knowledge has been achieved in a number of topics, including e.g. fish behaviour (swimming, escapement and reaction to light), fish mortality and survival, fine-scale spatial distribution of key species, handling and flesh properties of a number of different fish species, DNA characterisation etc. As such, it must be recognised that the landing Obligation has triggered significant advances in fundamental biological, ecological and technological knowledge, way beyond the state of the art at the time of the reform of the Common Fishery Policy in 2013. It is certain that this research activity would not have taken place without the political pressure to reduce discards. However, in spite of these intense scientific and technical analyses, it is obvious that the discarding issue has not been solved yet. The complexity of the issue is immense, and there are still many technical, economic, social, cultural, psychological, institutional and political barriers that hinder the achievement of the objectives of the landing obligation. There are thus no simple and unique „one-size-fits-all“ technical solutions that would solve all issues and without economic impact. But there are many small steps that can be taken, which individually can contribute to reducing discards. Box 1: Highlights In all case studies, new knowledge have been developed about the possible technical and tactical approaches to reduce discards and/or to best utilise them in the value chain There is no simple and unique technical solutions that would solve all issues and without economic impact. But there are many small steps that can be taken, which individually can contribute to reducing discards A number of approaches are specific to a given issue in a given case study, but there are also many commonalities and some developments are of interest at a much wider scale than the case study The landing Obligation has triggered significant progresses in scientific knowledge on a number of topics, including e.g. fish behaviour (swimming, escapement and reaction to light), fine-scale spatial distribution of key species, handling and flesh properties of a number of different fish species, DNA characterisation etc Important efforts have been made to make all this new knowledge easily available, easily understandable and easily shareable, through the public sharing of information via the DiscardLess website, including popular documents such as Discard Mitigation Toolbox, short reports, videos and powerpoint presentations. Box 2: The Methods/Approaches followed Synthesis of deliverables from Work Packages 3 (Gear Technology), 4 (Fishing strategies), 5 (onboard handling) and 6 (products to the value chain) compalied by case studies Additional references where appropriate Box 3: How these results can be used and by whom These sections by case studies will be made as individual chapters and published on http://www.discardless.eu/where-do-we-work, allowing for a regional synthetic overview of the knowledge available. This is of interest for all actors in a region, stakeholders and policy makers, in the frame of the regionaliation of the CFP, to
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Fitzpatrick, Mike; Nielsen, Kåre Nolde;Fitzpatrick, Mike; Nielsen, Kåre Nolde;Publisher: ZenodoProject: EC | DiscardLess (633680)
This Policy Brief provides an overview of the current status, initial experiences, barriers, and opportunities with regard to applying the LO in mixed demersal fisheries in the North Sea, North Western Waters and South Western Waters, the Mediterranean and the Azores. This area covers the all DiscardLess case studies, including the North Sea/West of Scotland, Celtic Sea, Eastern Channel & Bay of Biscay, the western and eastern Mediterranean, and the Azores. In quota managed fisheries, Mixed demersal fisheries provide the biggest challenge for implementation of the LO due to the difficulty of matching quotas with catches for multiple species which are caught simultaneously but in varying proportions. The policy brief reviews where we are with the LO now and what the main issues are. The main orientation of the policy brief is forward looking: what do stakeholders and researchers consider as the main approaches are to deal with the issues in each region until the next CFP reform? To conclude, we take a longer perspective, providing suggestions for how to implement a workable discard policy with the next reform of the CFP. The Policy Brief is written for policy makers, the fishing industry, NGO’s and citizens with an interest in fisheries management and is based on policy documents, stakeholder interviews, meetings and literature. Box 1: Report Highlights Implementation of the LO is occurring across all DiscardLess case studies with measures such as trials of selective gears, provision of information on implementation requirements and the use of exemptions among the aspects most evident. There is very little evidence to date of changes in discard rates or fishing practices although that is not confirmation that these are not occurring but reflects a lack of data to draw such conclusions at present. Recording of discards under exemptions and unwanted catches remains lower than expected although there is evidence of some increase in these practices in early 2019. It is difficult to assess whether changes in fishing practices to promote selectivity and avoid discards are taking place. Given some delays in sanctioning and gradual uptake of new gears (e.g. for trawlers catching Baltic Cod), recent changes to permitted gears (e.g. new mesh size and TCM requirements in the Celtic Sea) and the upcoming implementation of the new Technical Measures framework some improvements in selectivity and discard rates would be expected. The quality of discard data is not improving due to industry fears about the potential negative impact of providing discard data and subsequent decrease in observer coverage in some Member States. Stakeholders across all backgrounds have expressed concerns about the risks associated with potential rises in fishing mortality. Concerns about efficient and effective monitoring of the LO are increasingly being channeled into calls for electronic monitoring across all fleets or on a risk assessment basis. These calls are particularly strong in some MS such as Denmark. A move towards a Results Based Management approach involving electronic monitoring is being advocated with some industry stakeholders specifying that it would require changes to the LO in order for it to gain industry support. Despite a general negative attitude towards the LO among fishers contributions to the final DiscardLess conference in January 2019 including from fishers outlined both positives, such as the incentivising of change, as well as implementation barriers. These are described in greater detail in Section 8.2 below. Box 2: The methods/approaches followed Interviews with a broad range of stakeholders from Commission level, through national administrators, industry and NGO representatives and individual fishermen. Participation in relevant national, regional and EU meetings. Analysis of relevant policy statements, regulatory documents and academic literature. Box 3: How these results can be used and by who? The policy brief on guidelines for the implementation of the discard policy in European regions is of interest to stakeholders at all levels in EU fisheries as the question of what is actually happening with the LO in other fisheries and regions is asked regularly. Box 4: Policy Recommendations Data shortfalls make it difficult to make a reliable assessment of the extent of LO implementation and it’s impact. Improvements in the following areas of data provision would greatly assist with this assessment process. Recording of discards and unwanted catches at vessel level is poor across all case studies and has been identified by STECF as the most significant problem with monitoring LO implementation. MS will have to develop stronger accounting measures based on last haul analysis if this trend continues. As part of annual reporting on LO implementation MS should provide data not just on selectivity trials undertaken but also on the uptake rates for the use of such gears beyond trial situations. This would allow assessments of changes in selectivity patterns within fisheries to be made. The uptake rates of selective gears could be potentially accelerated by incentivising their use with additional quota. Negative industry attitudes towards the LO across all case studies point to the necessity to find workable discard reduction plans at regional level. The evolving regionalisation process which now incorporates technical measures, multi-annual plans, discard plans and in some cases bycatch reduction plans may provide the necessary framework to overcome industry fears particularly regarding choke closures. Reduced uncertainty regarding the use of measures such as inter-species flexibility and it’s effect on relative stability would assist with mitigating potential chokes. The need for effective monitoring and control of the LO is clear. Calls for the use of electronic monitoring as the solution will also require some degree of industry acceptance in order for this to be viable. Implementing an electronic monitoring approach either on a risk basis or as part of a wider results-based management approach could make this a more feasible option.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Savina, Marie; Girardin, Raphael; Lehuta, Sigrid; Travers, Morgane; Quetglas, Toni; Cook, Robin; Heath, Michael; Triantaphyllidis, George; Tsikliras, Athanassios; Morato, Telmo; +3 moreSavina, Marie; Girardin, Raphael; Lehuta, Sigrid; Travers, Morgane; Quetglas, Toni; Cook, Robin; Heath, Michael; Triantaphyllidis, George; Tsikliras, Athanassios; Morato, Telmo; Soszynski, Ambre; Andonegi, Eider; Gascuel, Didier;Publisher: ZenodoProject: EC | DiscardLess (633680)
Potential consequences of implementing the EU Landing Obligation on marine ecosystems can be listed in two categories: Food shortage: Reduction in the discard flow may lead to a food shortage for some scavenger species including birds, benthic and demersal fish and invertebrates. Altered exploitation: New constraints for fishing fleets are expected to translate into changes in the exploitation (reduced fishing mortality, changes in the spatial and seasonal distribution of effort, improved selectivity …) having a direct effect on fish stocks. Both can then lead to longer term effects arising from changes in the relative abundance of different species or group of species.These effects are considered as“ecosystem effects” since they arise from the interactions between species and the change in energy flows through the system. In this work package, using existing or developping modelling tools implemented across the DiscardLess case studies, we had two objectives: i) Addressing the question of the long term ecosystem effects of the LO in the most homogeneous way across models and case studies: what are the impacts of reduced discard flows into marine environments and how does it compare with the impact of changes in the exploitation? Overall, the trophic models used found little effect of a discard ban (landing the fish previously discarded, with no changes in the fishing pressure) on the ecosystem, except for birds. On the other hand, not catching the fish that were previously discarded had a significant effect in our simulations, which confirms that the ecological effects of the Landing Obligation will be through reduced fishing pressure rather than anything else. i) Exploring the question of the altered exploitation: how the LO will change the fishing strategies and how will it impacts the fish stocks? and the ecosystem? (for some case studies) In the Eastern Channel, the 2 models used (Isis Fish and Osmose/DSVM) suggest that the implementation of the LO will benefit fish stocks, although in the case of Osmose/DVSM the biomass increases are buffered by trophic interactions, particularly through cod and whiting predations on other commercial species. Both models also suggest a long term benefit to fleets, following a 10 year long period of decreased revenues. In the Bay of Biscay, the results of the FLBEIA bioeconomic model (WP2) have been used to drive forecast simulations with EwE, to analyze the status of the Bay of Biscay ecosystem in the short-medium term (from 2013 to 2024). The results illustrate “winners” and “losers” and particularly how seabirds and carnivorous benthic invertebrates are likely to be those suffering from the LO, while hake will increase its overall abundance. Finally in the North Sea, the StrathE2E model was extended spatially and refined in terms of the description and dynamics of the fishing fleets. The general outcome is similar to what was stated in the previous version, i.e. simply changing discarding practices while fishing as usual, has a negligible conservation benefit at the level of the ecosystem as a whole. On the other hand, tacking the curtailment of discarding by reducing the capture of unwanted fish has the potential to deliver noticeable conservation benefits.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Frangoudes, Katia;Frangoudes, Katia;Publisher: ZenodoProject: EC | DiscardLess (633680)
Box 1: Report Highlights and key results LO implementation was negatively criticised by fishers Fishers perceive LO as top down decision responding to the interest of other economic sectors or lobby forces Fishers consider that LO will impact negatively their activity Change of negative opinion need communication about LO using the right arguments Fisheries managers (PO’s) who understood why LO should be implemented used the right arguments to convince fishers to register discardd in logbook. Box 2: Methods used Interviews, Organisation of focus groups, Analysis of qualititave data, Quantitative survey (postal in France and face to face in Greece) and analysis. Box 3: How these results can be used and by who? The results can be used by policy makers at regional, national and EU level. But also by fisheries managers and fishers’ representatives as well scientists interesting about this issue. The results of this task were used for the publication of two chapters in the DiscardLess book and one Article. The results of the survey can be used for publication of Articles in specialized relevant Journals. Box 4: Policy implications Clarification of some aspects of the Article 15 of Regulation (EU) No 1380/2013 is recommended because it can help the implementation of the LO.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Viðarsson, Jónas R.; Ragnarsson, Sigurður Örn; Einarsson, Marvin Ingi; Sævarsson, Birgir; Sævarsdóttir, Rakel; Szymczak, Piotr; Triantaphyllidis, George V.; Argyrou, Ioanna; Fitzpatrick, Mike;Viðarsson, Jónas R.; Ragnarsson, Sigurður Örn; Einarsson, Marvin Ingi; Sævarsson, Birgir; Sævarsdóttir, Rakel; Szymczak, Piotr; Triantaphyllidis, George V.; Argyrou, Ioanna; Fitzpatrick, Mike;Publisher: ZenodoProject: EC | DiscardLess (633680)
In 2019, a wide-ranging Landing Obligation (LO) is to be fully in place within the European Union, ensuring that all fish that is hauled on board fishing vessels operating in European waters is brought to shore (with few minor exceptions). To be able to fulfil these requirements, fishermen and stakeholders operating in various fishing industries will need to have viable solutions for what to do with the excess catch and that is the focus of this report. The report focuses on four different fishing fleet sectors and two national examples that represent a good cross-section of European fisheries, varying in size and operation. The report is structured in such a way that each case is independent, which allows the reader to choose what case studies to read. This does however mean that there is some repetition when reading the report as a whole. The six case studies presented in this document are small-scale coastal vessels, intermediate size bottom trawlers / Danish seiners, large-scale fresh fish bottom trawlers, and large factory bottom trawler; as well as national examples/analysis of how the Greek and the Irish fishing sectors could attempt to meet the requirements of the Landing Obligation. The first four cases are presented with detailed 3D drawings of the vessels along with renders of images and videos on the DiscardLess webpage http://www.discardless.eu which enables stakeholders to see the results in a visual manner. Furthermore, a cost-benefit tool can be found on the website as well, which makes it possible to get raw estimates on return of investment based on the fleet type and gear chosen. All the solutions presented are currently available on-board fishing vessels and are being used by several fleet segments and therefore the focus was on making them realistic and feasible to implement. The solutions focus largely on separating between the target catches and the unwanted catches and to provide alternatives for processing and storing under Minimum Conservation Reference Size catches as well as unwanted, unavoidable catches. These categories cannot be utilized for direct human consumption according to the Landing Obligation of the EU Common Fisheries Policy. Given the current status of the EU fisheries and seafood sector and how it is adapting to the Landing Obligation, it is the opinion of the authors of this report that there is a need for implementing short-term simple solutions to meet the requirements of the Landing Obligation; but that strategies for long-term solutions need also to be drafted. The main emphasis of this report is on short-term solutions in the form of silage, fishmeal and fish oil production that can be implemented immediately. The report does though also identify and discuss more complicated long-term solutions that require significant investment and forward thinking of everyone in the value chain.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
29 Research products, page 1 of 3
Loading
- Other research product . Other ORP type . 2022Open Access Dutch; FlemishAuthors:Katharina Biely;Katharina Biely;Publisher: ZenodoProject: EC | SUFISA (635577)
The documents in these folders represent part of the qualitative data collection documentation. Research has been performed in Flanders (Belgium) in 2016 and 2017. Involved stakehodlers were flemish sugar beet farmers, processors as well as other value chain members. Though, the main stakeholders involved were farmers. The raw data cannot be published. Anonymized interview transcripts and focus group transcripts exist. However, as indicated in the informed consent, farmers did not agree to the raw data being published. The codes that resulted from data analysis are in this folder. Interview questions differed slightly from farmer to farmer as follow up questions may have been posed if needed. First interviews were performed, then focus groups were conducted and finally a workshop was organized. The qualitative reserach followed the research strategy and plan determined by the SUFISA project. On the project webpage (https://www.sufisa.eu/) more information can be found.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2022Open Access EnglishAuthors:Katharina Biely;Katharina Biely;Publisher: ZenodoProject: EC | SUFISA (635577)
This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2021Open Access EnglishAuthors:Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;Tanhua, Toste; Kazanidis, Georgios; Sá, Sandra; Neves, Caique; Obaton, Dominique; Sylaios, Georgios;Publisher: ZenodoProject: EC | Blue Cloud (862409), EC | EurofleetsPlus (824077), EC | AtlantECO (862923), EC | JERICO-S3 (871153), EC | NAUTILOS (101000825), EC | ODYSSEA (727277), EC | MISSION ATLANTIC (862428), EC | iAtlantic (818123), EC | EuroSea (862626), EC | ATLAS (678760)
Ten innovative EU projects to build ocean observation systems that provide input for evidence-based management of the ocean and the Blue Economy, have joined forces in the strong cluster ‘Nourishing Blue Economy and Sharing Ocean Knowledge’. Under the lead of the EuroSea project, the group published a joint policy brief listing recommendations for sustainable ocean observation and management. The cooperation is supported by the EU Horizon Results Booster and enables the group to achieve a higher societal impact. The policy brief will be presented to the European Commission on 15 October 2021. The ocean covers 70% of the Earth’s surface and provides us with a diverse set of ecosystem services that we cannot live without or that significantly improve our quality of life. It is the primary controller of our climate, plays a critical role in providing the air we breathe and the fresh water we drink, supplies us with a large range of exploitable resources (from inorganic resources such as sand and minerals to biotic resources such as seafood), allows us to generate renewable energy, is an important pathway for world transport, an important source of income for tourism, etc. The Organisation for Economic Cooperation and Development (OECD) evaluates the Blue Economy to currently represent 2.5% of the world economic value of goods and services produced, with the potential to further double in size by 2030 (seabed mining, shipping, fishing, tourism, renewable energy systems and aquaculture will intensify). However, the overall consequences of the intensification of human activities on marine ecosystems and their services (such as ocean warming, acidification, deoxygenation, sea level rise, changing distribution and abundance of fish etc.) are still poorly quantified. In addition, on larger geographic and temporal scales, marine data currently appear fragmented, are inhomogeneous, contain data gaps and are difficult to access. This limits our capacity to understand the ocean variability and sustainably manage the ocean and its resources. Consequently, there is a need to develop a framework for more in-depth understanding of marine ecosystems, that links reliable, timely and fit-for-purpose ocean observations to the design and implementation of evidence-based decisions on the management of the ocean. To adequately serve governments, societies, the sustainable Blue Economy and citizens, ocean data need to be collected and delivered in line with the Value Chain of Ocean Information: 1) identification of required data; 2) deployment and maintenance of instruments that collect the data; 3) delivery of data and derived information products; and 4) impact assessment of services to end users. To provide input to the possible future establishment of such a framework, ten innovative EU projects to build user-focused, interdisciplinary, responsive and sustained ocean information systems and increase the sustainability of the Blue Economy, joined forces in a strong cluster to better address key global marine challenges. Under the lead of the EuroSea project, the group translated its common concerns to recommendations and listed these in the joint policy brief ‘Nourishing Blue Economy and Sharing Ocean Knowledge. Ocean Information for Sustainable Management.’. Following up on these recommendations will strengthen the entire Value Chain of Ocean Information and ensure sound sustainable ocean management. In this way, the 10 projects jointly strive to achieve goals set out in the EU Green Deal, the Paris Agreement (United Nations Framework Convention on Climate Change) and the United Nations 2021-2030 Decade of Ocean Science for Sustainable Ocean Development. Toste Tanhua (GEOMAR), EuroSea coordinator: “It was great to collaborate with these other innovative projects and make joint recommendations based on different perspectives and expertise.”
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Larsen, Erling; Iñarra, Bruno; Peral, Irene;Larsen, Erling; Iñarra, Bruno; Peral, Irene;Publisher: ZenodoProject: EC | DiscardLess (633680)
This document is the fourth deliverable in work package six (WP6) of the DiscardLess project, which aims to contribute to the gradual elimination of the discards in the European fisheries, in agreement with the reformed Common Fisheries Policy (CFP) of the EU and the implementation of the landing obligation (LO). The LO states that all regulated species shall be landed. This implies developing alternative solutions at land to manage and make best use of Unavoidable Unwanted Catches (UUC). However, the CFP also states that these solutions shall avoid incentivising the targeting of fishing on these UUC. On the other hand, the handling of UUC onboard will increase onboard handling, which is already time consuming and demanding for the crew. This will increase costs. Shortage of storage capacity because of the space needed for UUC onboard may also contribute to reducing income, therefore viable solutions for UUC management are needed to minimise the impact of the LO on the industry. The suggested uses of unavoidable unwanted catches reported in deliverable D6.2. need thus to be economically attractive for the processors and for the fishers and at the same time must avoid creating incentives to the fisheries. The present deliverable 6.4 looks into some of the initiatives that have actually already taken place using the UUC as raw-material. To get an overview of the amount of UUC landed and of what would be viable options for the processing industry, and to collect data needed for the cost-benefit analyses of the options, many interviews were performed in the three countries of Denmark, France and Spain. The overall conclusion of all the interviews is that no product is currently made from a single source of UUC, but the landed UUC are integrated in the raw-material stream of the processing industries, especially fish meal and fish oil industries. Box 1: Report Highlights There is a broad range of possibilities to valorise UUC fish and fish compounds, however, not all the solutions are able to cope with the huge variability of the expected UUC landings. The LO states that only UUC above Minimum Conservation Reference Size (MCRS) can be used for human consumption. There is a need for designing new fish products that avoid incentivising the catching of undersized fish, and, at the same time, avoid affecting negatively the existing markets. A more in-depth analysis of the economic feasibility of some of the valorisation options for different UUC fractions in different scenarios (D6.2) has been performed. For the Bay of Biscay case study (BoB-CS), some fish species as mackerel, horse mackerel and blue whiting have important volumes of discards due to their low commercial value. They are thus considered as UUC for which better commercialization and consumption could be enhanced by developing new seafood products or concepts. Also, in the Bay of Biscay, there is an important amount of hake under MCRS that can’t be used in direct human consumption but can be very valuable for the production of food ingredients such as flavouring agents. Finally, the production of fishmeal and fish oil used for animal feed, mainly for aquaculture, is the most common use of fish by-products and is a straightforward option for the treatment of UUC when there is an available facility nearby. The feasibility study indicates that the proposed solutions are economically feasible within the scope of the study even at low price. The North Sea case study describes the activities taking place in the Danish port of Hanstholm, with a case study on the fishery targeted at plaice. Several interviews with relevant buyers of the UUC were conducted and their evaluation is presented. Box 2: The methods/approaches followed The expected amount of potential UUC in the different CS were quantified based on current discards data, and the most favourable valorisation options were selected based on their economic feasibility. For various solutions the economic analysis was performed through calculation of the Benefit-Cost Ratio (BCR), Net Present Value (NPV), Internal Return Rate (IRR), etc. Due to the important variation of the amount of UUC foreseen, several scenarios were evaluated. Furthermore, the calculation of UUC price range was performed to reach a “non incentivising” scenario. The North Sea case study is based on personal interviews with relevant persons from the processing and final product links in the value chain. Box 3: How these results can be used and by who? The results from the economic evaluation of different valorisation option can be used by: Research centres to contrast different solutions and compare with its own Fishermen organization willing to evaluate the value of their UUC Local companies: fish processing industries, “waste” managers looking for improving their fish by products or the UUC Investor willing to start a new business Local administration bodies to develop integrated valorisation plans for discards Policy makers to promote the implementation of selected strategies In general, the economic feasibility of a technically viable solution is of great interest for any actor of the chain looking for a solution to minimize the economic impact of the LO application. Box 4: Policy Recommendations Due to economic viability of the proposed valorisation schemas for UUC can be proposed for the definition of best available techniques. Changes in the CFP regarding proper on board handling and storage of UUC can help obtain more value from these fractions.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Savina, Marie; Ulrich, Clara; Borges, Lisa; Reid, David; Quetglas, Antoni; Guijarro, Beatriz; Massutí, Enric; Vaz, Sandrine; Jadaud, Angelique; Robert, Marianne; +10 moreSavina, Marie; Ulrich, Clara; Borges, Lisa; Reid, David; Quetglas, Antoni; Guijarro, Beatriz; Massutí, Enric; Vaz, Sandrine; Jadaud, Angelique; Robert, Marianne; Vermard, Youen; Morato, Telmo; Fauconnet, Laurence; Afonso, Pedro; Andonegi, Eider; Prellezo, Raul; Campbell, Neill; Tsikliras, Athanasios; Triantaphyllidis, George; Argyrou, Ioanna;Publisher: ZenodoProject: EC | DiscardLess (633680)
The Common Fisheries Policy of the European Union was reformed in 2013 to improve the conservation of marine biological resources and the viability of the fishing sector and reduce unsustainable fishing practices (European Union 2013). One of the cornerstones of the reform is Article 15 (termed the Landing Obligation, LO), stipulating the obligation to bring to land all catches of quota- or size-regulated species with the overall aim to gradually eliminate discards. The shift of focus from landed catches to all catches (i.e. including discards) in the current CFP has had a number of wide-ranging implications on the scientific ecological knowledge and on the ways the scientific community is providing advice on fishing opportunities. Article 15, paragraph 2(b), of the CFP describes an exemption from the Landing Obligation for “species for which scientific evidence demonstrates high survival rates, taking into account the characteristics of the gear, of the fishing practices and of the ecosystem”. This provision has sparked a high interest in discard survival assessments and mobilised Member States and fishing industry representative organisations. The STECF a well as the dedicated ICES group WKMEDS have been heavily involved in providing guidance and developing protocols on how to quantify discard survival robustly in the early stages. Spanning from the Mediterranean to the Baltic, more than 20 studies have been carried out all over Europe between 2013 and 2018 and assessed by the STECF. Generating robust evidence on discard survival estimates that is representative of a fishery still remains challenging. Defining what “high survival” means has also been challenging. The Landing Obligation has rendered the provision of scientific advice more complex to perform and quality-check, and more difficult to formulate. Since 2015, two main changes have been triggered in the ICES process, involving the way catch data are collected and the way forecasts are performed and presented. Changes in catch data have emerged from the need to quantify and use new categories, i.e. Landings below minimum conservation reference size and Logbook Registered Discard). Conceptual decisions must be made on how to sample, monitor and include these catch components in the stock assessment. Until now however, the data sent to ICES for these new categories have remained negligible. In theory, the landing obligation would ensure that all catches would be landed, and a single catch advice would suffice. In practice, this poses a number of quantitative challenges, linked to the facts that: i) discarding still takes place and cannot be ignored; and ii) legal provisions (e.g. high survivability, de minimis and predator damage fish) in article 15 mean that the landing obligation is only partially applicable. Finally, the phased implementation together with incomplete discard data have made the calculation of TAC uplift particularly challenging. On the management side, TACs have been adjusted to facilitate the implementation of the LO, although overall, discarding practices have little changed in Europe to date. This may well lead to counterproductive increases in fishing mortality. The final section summarises the situation in the DiscardLess case studies, providing updated discard plans. No significant changes have been observed over the 2015-2018 period due to the implementation of the the LO, in the discarding patterns and volumes. An exception to that would be in the North Sea and west of Scotland, haddock, and to a lesser extent North Sea cod and Saithe (in the west of Scotland only) for which discard volumes have decreased.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Ulrich, Clara;Ulrich, Clara;Publisher: ZenodoProject: EC | DiscardLess (633680)
This deliverable provides an overview of the various Discard Mitigation Strategies (DMS) that have been analysed and investigated in the various case studies. The DMSs are proposed and examined as case specific approaches to support the implementation of the European Landing Obligation (LO). The DMSs represent potential approaches to reduce unvanted catches through fishing gear technology (WP3) changes in fishing patterns (WP4), by finding efficient solutions for handling unavoidable unwanted onboard (WP5), and through identifying existing and novel ways to utilize unwanted catches (WP6). This deliverable represents thus a synthesis of the work developed in these four “innovation” Work Packages, summarised by region. The technical details of the various approaches can be found in the corresponding deliverables from these WPs and where applicable, in scientific publications. The work has been diverse, and not all tasks / work package have been performed in each case study. But in every case studies, significant amounts of new knowledge have been developed about the possible technical and tactical approaches to reduce discards and/or to best utilise them in the value chain. A number of approaches are specific to a given issue in a given case study, but there are also many commonalities and some developments are of interest at a much wider scale than the case study. In the Azores case study, several mitigation measures to the Landing Obligation were assessed for the bottom hook-and-line fisheries. The main technical measures analysed hook size and hook shape. Fishing experiments performed by the DiscardLess team proved that the J-hooks, currently used in the fishery, are better than circle hooks to limit deep-water shark bycatch. The main tactical measures included spatial and vertical/depth avoidance strategies. Spatial avoidance strategies appear of limited potential for blackspot seabream. For deep-water sharks, habitat suitability models showed large distribution, mostly influenced by depth, of most species, and some areas with high number of deep-water sharks. Some areas of high conflict (high number of zero TAC species and high fishing effort) could be identified. The large number of species included within the zero TAC limitation, and the high mobility of some species, render spatial avoidance measures difficult to implement. However,depth avoidance strategies could be more promising. The most promising measure to avoid unwanted catch appears to be the conversion of bottom longlining to handlining., which has also been ongoing for some years. Data collected as part of the DiscardLess project in the Azores were used to support requests for exemptions asked by the Regional Government of the Azores, which were granted in 2018. In the Eastern Mediterranean Sea (Agean Sea) case study, selectivity analyses have shown that both 40mm square and 50mm diamond meshes, compared to the 40mm diamond, would increase escapement and reduce discards. There seems to be little scope for avoidance strategies. Some feasibility analyses were performed for the use of discards at shore. investigating options for small quantities of unwanted landings in small harbours. Two options were suggested: fishmeal/fishoil and silage, using small mobile production plants. However, the initial investments costs are important and the expected returns are limited. In the Western Mediterranean Sea (Balearic Islands / Gulf of Lions), the problem of small-sized fish is mainly related to hake, and discard rates for all other species under the LO are low, except for horse mackerel. Most trawlers from the Balearic Islands have already changed to 40 mm square mesh cod-end, but there is still scope for improving the fishery selectivity and avoid juveniles of hake and mackerel by changing the mesh size and shape or introducing other devices such as panels and grids. Spatial management is widely used and supported in the Mediterranean as a strategy to reduce unwanted catches. Fishers highly support the mapping of juvenile hotspots based on scientific knowledge. DiscardLess developed a number of spatial models in this area, and made them available through Apps consultable via Internet. However, forecasting the impact of discard avoidance management on the sustainability of trawler fisheries is challenging, requiring data, time and trained human-resources. In the Bay of Biscaye case study, most of the work performed by DiscardLess dealt with the use of unwanted catches in the value chain. A catalogue of more than 30 different utllisations was published online, and a systematic approach was developed for a rapid appraisal of which of the possible utilisations might be preferable in a case-by-case approach, depending on the quantity, quality and variability of the expected volumes of unwanted catches, of the existing and required infrastructures and logistics, and of the potential market demand. Some trials were conducted, producing e.g. fish pulp and hydrolysates out of unwanted mackerel and juvenile hake brought to land. Different options for the adequate handling of unwanted catches onboard were proposed, and an automatic system at shore for the identification and classification of unwanted fish that would be landed iced and preserved as normal catches was developed and successfully tested. Some cost-efficient DNA tests for the rapid detection of the presence/absence of a species in a mix were also developed. The mixed nature of the species targeted by demersal fisheries in the Celtic Sea case study results in numerous challenges with the introduction of the Landing Obligation. It is likely that a combination of improved gear selectivity and the adoption of alternative fishing strategies will be required to avoid some of the unwanted catches, and to maximise on fishing opportunities under the LO. There is certainly no one-size fits all solution, and it is likely that gear and behaviour adaptations will mitigate some, but not all problems with choke species and <MCRS fish. DiscardLess provided resources in the form of the selectivity manual and mapping apps for the Celtic Sea, but further collaborations with industry will be required to ensure that future developments of mapping applications meet the needs of interested stakeholders in appropriate formats and time frames. By sharing information on occurrences of undersize fish or spawning aggregations for example, coupled with the information provided in the maps developed in this project, fishers should be much better equipped to avoid choke species and juvenile fish. A major problem in the Celtic Sea remains that due to quota allocation rules as well as stock status, all Member States encounter choke issues, while TAC is globally undershot for a number of species. There is thus some potential for management measures to help mitigate the impacts of the LO. In the Eastern English Channel case study as well, the mixed nature of the fisheries results in numerous challenges with the introduction of the Landing Obligation. One of the main obstacle to gear selectivity improvement is the diversity of species (with large differences in size, shape, market value and management regime), which have made attempts to improve gear selectivity little conclusive in the area. Some „challenge“ experiments to test the Landing Obligation in real conditions showed issues in increasing workload and storage capacity onboard. DiscardLess performed numerous interviews and studies dedicated to the mapping of unwanted catches including some user-friendly maps apps. Fishermen engaged in collaboration for designing adequate knowldge plateforms and scenarios given their limited sets of options for changing fishing zones, given the large amount of other usages of the maritime space in the area. In the North Sea/West of Scotland case study, many different DMS analyses were conducted. but mainly involving desk studies and laboratory experiments rather than actual trials at sea. Major progresses in knowlegde on gear selectivity was brought together and shared, including the publication of numerous factsheets on selective devices and some in-depth analyses of how and why the various elements of a trawls modify selectivity by affecting fish behaviour. Extensive experiments of the use of light were conducted, in order to test the avoidance/attraction reactions of fish to different types of light (color, intensity, flash etc). The results demonstrate some differences in behaviour between different species of fish, which could be a promising avenue for improving catch composition. Several studies were published advancing knowledge on the spatial distribution of choke species and unwanted catches, not least using fine-scale fisheries data coming from different previous Danish pilot trials involving Electronic Monitoring and weighting-packing at sea. Regarding the valoriation of unwanted catches in the value chain, a project was run in collaboration with the harbour of Hanstholm (DK), which established new facilities for the storage and delivery of fish in 2017. At present, most unwated catches and rest raw products are used for feed in the mink farms. The project also foresaw initially the rebuilding of the processing deck of a trawler, but the discard levels in that fishery remain limited and not worth the investment. Finally, a large part of the work performed by DiscardLess in this case study related to the issue of Monitoring, Control and Surveillance. This included both the publication of various studies on experiences and progresses with Fully Documented Fisheries and Electronic Monitoring, and major progresses achieved on the use of DNA technology for the characterisation of species in a mix (e.g. bulk or silage) and the quantification of the relative biomass of each species. This represents a promising break-through for the control and traceability of unanted catches in the value chain. Alltogether, important progresses in scientific knowledge has been achieved in a number of topics, including e.g. fish behaviour (swimming, escapement and reaction to light), fish mortality and survival, fine-scale spatial distribution of key species, handling and flesh properties of a number of different fish species, DNA characterisation etc. As such, it must be recognised that the landing Obligation has triggered significant advances in fundamental biological, ecological and technological knowledge, way beyond the state of the art at the time of the reform of the Common Fishery Policy in 2013. It is certain that this research activity would not have taken place without the political pressure to reduce discards. However, in spite of these intense scientific and technical analyses, it is obvious that the discarding issue has not been solved yet. The complexity of the issue is immense, and there are still many technical, economic, social, cultural, psychological, institutional and political barriers that hinder the achievement of the objectives of the landing obligation. There are thus no simple and unique „one-size-fits-all“ technical solutions that would solve all issues and without economic impact. But there are many small steps that can be taken, which individually can contribute to reducing discards. Box 1: Highlights In all case studies, new knowledge have been developed about the possible technical and tactical approaches to reduce discards and/or to best utilise them in the value chain There is no simple and unique technical solutions that would solve all issues and without economic impact. But there are many small steps that can be taken, which individually can contribute to reducing discards A number of approaches are specific to a given issue in a given case study, but there are also many commonalities and some developments are of interest at a much wider scale than the case study The landing Obligation has triggered significant progresses in scientific knowledge on a number of topics, including e.g. fish behaviour (swimming, escapement and reaction to light), fine-scale spatial distribution of key species, handling and flesh properties of a number of different fish species, DNA characterisation etc Important efforts have been made to make all this new knowledge easily available, easily understandable and easily shareable, through the public sharing of information via the DiscardLess website, including popular documents such as Discard Mitigation Toolbox, short reports, videos and powerpoint presentations. Box 2: The Methods/Approaches followed Synthesis of deliverables from Work Packages 3 (Gear Technology), 4 (Fishing strategies), 5 (onboard handling) and 6 (products to the value chain) compalied by case studies Additional references where appropriate Box 3: How these results can be used and by whom These sections by case studies will be made as individual chapters and published on http://www.discardless.eu/where-do-we-work, allowing for a regional synthetic overview of the knowledge available. This is of interest for all actors in a region, stakeholders and policy makers, in the frame of the regionaliation of the CFP, to
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Fitzpatrick, Mike; Nielsen, Kåre Nolde;Fitzpatrick, Mike; Nielsen, Kåre Nolde;Publisher: ZenodoProject: EC | DiscardLess (633680)
This Policy Brief provides an overview of the current status, initial experiences, barriers, and opportunities with regard to applying the LO in mixed demersal fisheries in the North Sea, North Western Waters and South Western Waters, the Mediterranean and the Azores. This area covers the all DiscardLess case studies, including the North Sea/West of Scotland, Celtic Sea, Eastern Channel & Bay of Biscay, the western and eastern Mediterranean, and the Azores. In quota managed fisheries, Mixed demersal fisheries provide the biggest challenge for implementation of the LO due to the difficulty of matching quotas with catches for multiple species which are caught simultaneously but in varying proportions. The policy brief reviews where we are with the LO now and what the main issues are. The main orientation of the policy brief is forward looking: what do stakeholders and researchers consider as the main approaches are to deal with the issues in each region until the next CFP reform? To conclude, we take a longer perspective, providing suggestions for how to implement a workable discard policy with the next reform of the CFP. The Policy Brief is written for policy makers, the fishing industry, NGO’s and citizens with an interest in fisheries management and is based on policy documents, stakeholder interviews, meetings and literature. Box 1: Report Highlights Implementation of the LO is occurring across all DiscardLess case studies with measures such as trials of selective gears, provision of information on implementation requirements and the use of exemptions among the aspects most evident. There is very little evidence to date of changes in discard rates or fishing practices although that is not confirmation that these are not occurring but reflects a lack of data to draw such conclusions at present. Recording of discards under exemptions and unwanted catches remains lower than expected although there is evidence of some increase in these practices in early 2019. It is difficult to assess whether changes in fishing practices to promote selectivity and avoid discards are taking place. Given some delays in sanctioning and gradual uptake of new gears (e.g. for trawlers catching Baltic Cod), recent changes to permitted gears (e.g. new mesh size and TCM requirements in the Celtic Sea) and the upcoming implementation of the new Technical Measures framework some improvements in selectivity and discard rates would be expected. The quality of discard data is not improving due to industry fears about the potential negative impact of providing discard data and subsequent decrease in observer coverage in some Member States. Stakeholders across all backgrounds have expressed concerns about the risks associated with potential rises in fishing mortality. Concerns about efficient and effective monitoring of the LO are increasingly being channeled into calls for electronic monitoring across all fleets or on a risk assessment basis. These calls are particularly strong in some MS such as Denmark. A move towards a Results Based Management approach involving electronic monitoring is being advocated with some industry stakeholders specifying that it would require changes to the LO in order for it to gain industry support. Despite a general negative attitude towards the LO among fishers contributions to the final DiscardLess conference in January 2019 including from fishers outlined both positives, such as the incentivising of change, as well as implementation barriers. These are described in greater detail in Section 8.2 below. Box 2: The methods/approaches followed Interviews with a broad range of stakeholders from Commission level, through national administrators, industry and NGO representatives and individual fishermen. Participation in relevant national, regional and EU meetings. Analysis of relevant policy statements, regulatory documents and academic literature. Box 3: How these results can be used and by who? The policy brief on guidelines for the implementation of the discard policy in European regions is of interest to stakeholders at all levels in EU fisheries as the question of what is actually happening with the LO in other fisheries and regions is asked regularly. Box 4: Policy Recommendations Data shortfalls make it difficult to make a reliable assessment of the extent of LO implementation and it’s impact. Improvements in the following areas of data provision would greatly assist with this assessment process. Recording of discards and unwanted catches at vessel level is poor across all case studies and has been identified by STECF as the most significant problem with monitoring LO implementation. MS will have to develop stronger accounting measures based on last haul analysis if this trend continues. As part of annual reporting on LO implementation MS should provide data not just on selectivity trials undertaken but also on the uptake rates for the use of such gears beyond trial situations. This would allow assessments of changes in selectivity patterns within fisheries to be made. The uptake rates of selective gears could be potentially accelerated by incentivising their use with additional quota. Negative industry attitudes towards the LO across all case studies point to the necessity to find workable discard reduction plans at regional level. The evolving regionalisation process which now incorporates technical measures, multi-annual plans, discard plans and in some cases bycatch reduction plans may provide the necessary framework to overcome industry fears particularly regarding choke closures. Reduced uncertainty regarding the use of measures such as inter-species flexibility and it’s effect on relative stability would assist with mitigating potential chokes. The need for effective monitoring and control of the LO is clear. Calls for the use of electronic monitoring as the solution will also require some degree of industry acceptance in order for this to be viable. Implementing an electronic monitoring approach either on a risk basis or as part of a wider results-based management approach could make this a more feasible option.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Savina, Marie; Girardin, Raphael; Lehuta, Sigrid; Travers, Morgane; Quetglas, Toni; Cook, Robin; Heath, Michael; Triantaphyllidis, George; Tsikliras, Athanassios; Morato, Telmo; +3 moreSavina, Marie; Girardin, Raphael; Lehuta, Sigrid; Travers, Morgane; Quetglas, Toni; Cook, Robin; Heath, Michael; Triantaphyllidis, George; Tsikliras, Athanassios; Morato, Telmo; Soszynski, Ambre; Andonegi, Eider; Gascuel, Didier;Publisher: ZenodoProject: EC | DiscardLess (633680)
Potential consequences of implementing the EU Landing Obligation on marine ecosystems can be listed in two categories: Food shortage: Reduction in the discard flow may lead to a food shortage for some scavenger species including birds, benthic and demersal fish and invertebrates. Altered exploitation: New constraints for fishing fleets are expected to translate into changes in the exploitation (reduced fishing mortality, changes in the spatial and seasonal distribution of effort, improved selectivity …) having a direct effect on fish stocks. Both can then lead to longer term effects arising from changes in the relative abundance of different species or group of species.These effects are considered as“ecosystem effects” since they arise from the interactions between species and the change in energy flows through the system. In this work package, using existing or developping modelling tools implemented across the DiscardLess case studies, we had two objectives: i) Addressing the question of the long term ecosystem effects of the LO in the most homogeneous way across models and case studies: what are the impacts of reduced discard flows into marine environments and how does it compare with the impact of changes in the exploitation? Overall, the trophic models used found little effect of a discard ban (landing the fish previously discarded, with no changes in the fishing pressure) on the ecosystem, except for birds. On the other hand, not catching the fish that were previously discarded had a significant effect in our simulations, which confirms that the ecological effects of the Landing Obligation will be through reduced fishing pressure rather than anything else. i) Exploring the question of the altered exploitation: how the LO will change the fishing strategies and how will it impacts the fish stocks? and the ecosystem? (for some case studies) In the Eastern Channel, the 2 models used (Isis Fish and Osmose/DSVM) suggest that the implementation of the LO will benefit fish stocks, although in the case of Osmose/DVSM the biomass increases are buffered by trophic interactions, particularly through cod and whiting predations on other commercial species. Both models also suggest a long term benefit to fleets, following a 10 year long period of decreased revenues. In the Bay of Biscay, the results of the FLBEIA bioeconomic model (WP2) have been used to drive forecast simulations with EwE, to analyze the status of the Bay of Biscay ecosystem in the short-medium term (from 2013 to 2024). The results illustrate “winners” and “losers” and particularly how seabirds and carnivorous benthic invertebrates are likely to be those suffering from the LO, while hake will increase its overall abundance. Finally in the North Sea, the StrathE2E model was extended spatially and refined in terms of the description and dynamics of the fishing fleets. The general outcome is similar to what was stated in the previous version, i.e. simply changing discarding practices while fishing as usual, has a negligible conservation benefit at the level of the ecosystem as a whole. On the other hand, tacking the curtailment of discarding by reducing the capture of unwanted fish has the potential to deliver noticeable conservation benefits.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Frangoudes, Katia;Frangoudes, Katia;Publisher: ZenodoProject: EC | DiscardLess (633680)
Box 1: Report Highlights and key results LO implementation was negatively criticised by fishers Fishers perceive LO as top down decision responding to the interest of other economic sectors or lobby forces Fishers consider that LO will impact negatively their activity Change of negative opinion need communication about LO using the right arguments Fisheries managers (PO’s) who understood why LO should be implemented used the right arguments to convince fishers to register discardd in logbook. Box 2: Methods used Interviews, Organisation of focus groups, Analysis of qualititave data, Quantitative survey (postal in France and face to face in Greece) and analysis. Box 3: How these results can be used and by who? The results can be used by policy makers at regional, national and EU level. But also by fisheries managers and fishers’ representatives as well scientists interesting about this issue. The results of this task were used for the publication of two chapters in the DiscardLess book and one Article. The results of the survey can be used for publication of Articles in specialized relevant Journals. Box 4: Policy implications Clarification of some aspects of the Article 15 of Regulation (EU) No 1380/2013 is recommended because it can help the implementation of the LO.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2019Open AccessAuthors:Viðarsson, Jónas R.; Ragnarsson, Sigurður Örn; Einarsson, Marvin Ingi; Sævarsson, Birgir; Sævarsdóttir, Rakel; Szymczak, Piotr; Triantaphyllidis, George V.; Argyrou, Ioanna; Fitzpatrick, Mike;Viðarsson, Jónas R.; Ragnarsson, Sigurður Örn; Einarsson, Marvin Ingi; Sævarsson, Birgir; Sævarsdóttir, Rakel; Szymczak, Piotr; Triantaphyllidis, George V.; Argyrou, Ioanna; Fitzpatrick, Mike;Publisher: ZenodoProject: EC | DiscardLess (633680)
In 2019, a wide-ranging Landing Obligation (LO) is to be fully in place within the European Union, ensuring that all fish that is hauled on board fishing vessels operating in European waters is brought to shore (with few minor exceptions). To be able to fulfil these requirements, fishermen and stakeholders operating in various fishing industries will need to have viable solutions for what to do with the excess catch and that is the focus of this report. The report focuses on four different fishing fleet sectors and two national examples that represent a good cross-section of European fisheries, varying in size and operation. The report is structured in such a way that each case is independent, which allows the reader to choose what case studies to read. This does however mean that there is some repetition when reading the report as a whole. The six case studies presented in this document are small-scale coastal vessels, intermediate size bottom trawlers / Danish seiners, large-scale fresh fish bottom trawlers, and large factory bottom trawler; as well as national examples/analysis of how the Greek and the Irish fishing sectors could attempt to meet the requirements of the Landing Obligation. The first four cases are presented with detailed 3D drawings of the vessels along with renders of images and videos on the DiscardLess webpage http://www.discardless.eu which enables stakeholders to see the results in a visual manner. Furthermore, a cost-benefit tool can be found on the website as well, which makes it possible to get raw estimates on return of investment based on the fleet type and gear chosen. All the solutions presented are currently available on-board fishing vessels and are being used by several fleet segments and therefore the focus was on making them realistic and feasible to implement. The solutions focus largely on separating between the target catches and the unwanted catches and to provide alternatives for processing and storing under Minimum Conservation Reference Size catches as well as unwanted, unavoidable catches. These categories cannot be utilized for direct human consumption according to the Landing Obligation of the EU Common Fisheries Policy. Given the current status of the EU fisheries and seafood sector and how it is adapting to the Landing Obligation, it is the opinion of the authors of this report that there is a need for implementing short-term simple solutions to meet the requirements of the Landing Obligation; but that strategies for long-term solutions need also to be drafted. The main emphasis of this report is on short-term solutions in the form of silage, fishmeal and fish oil production that can be implemented immediately. The report does though also identify and discuss more complicated long-term solutions that require significant investment and forward thinking of everyone in the value chain.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.