Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
38 Research products, page 1 of 4

  • European Marine Science
  • Other research products
  • Open Access
  • European Commission
  • EU
  • English
  • The Cryosphere (TC)

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Kajanto, Karita; Straneo, Fiammetta; Nisancioglu, Kerim;
    Project: EC | ICE2ICE (610055)

    The role of icebergs in narrow fjords hosting marine terminating glaciers in Greenland is poorly understood, even though icebergs provide a substantial freshwater flux that can exceed the subglacial discharge. Iceberg melt is distributed at depth, contributing to fjord stratification, thus impacting melt and dynamics of the glacier front. We model the high-silled Ilulissat Icefjord in Western Greenland with the MITgcm ocean model, using the IceBerg package to study the effect of icebergs on fjord properties, and compare our results with available observations from 2014. We find the subglacial discharge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Icebergs are necessary to include to correctly understand the properties of Ilulissat Icefjord, since they modify the fjord in three main ways: First, icebergs cool and freshen the water column within their vertical extent; Second, icebergs depress the neutral buoyancy depth of the plume and the outflow route of glacially modified water; Third, icebergs modify the deep basin, below their vertical extent, due to both increased entrainment of glacially modified water into the fjord, and iceberg modification of the incoming ambient water. Furthermore, the depressed neutral buoyancy depth of the plume limits melt to the deep section of the front of Sermeq Kujalleq (Jakobshavn Isbræ) even during peak summer, and thus promotes undercutting. We postulate that the impact of icebergs on the neutral buoyancy depth of the plume is a key mechanism connecting iceberg melange and glacier calving, independent of mechanical support.

  • Open Access English
    Authors: 
    Smith-Johnsen, Silje; Fleurian, Basile; Schlegel, Nicole; Seroussi, Helene; Nisancioglu, Kerim;
    Project: EC | ICE2ICE (610055)

    The Northeast Greenland Ice Stream (NEGIS) currently drains more than 10 % of the Greenland Ice Sheet area and has recently undergone significant dynamic changes. It is therefore critical to accurately represent this feature when assessing the future contribution of Greenland to sea level rise. At present, NEGIS is reproduced in ice sheet models by inferring basal conditions using observed surface velocities. This approach helps estimate conditions at the base of the ice sheet but cannot be used to estimate the evolution of basal drag in time, so it is not a good representation of the evolution of the ice sheet in future climate warming scenarios. NEGIS is suggested to be initiated by a geothermal heat flux anomaly close to the ice divide, left behind by the movement of Greenland over the Icelandic plume. However, the heat flux underneath the ice sheet is largely unknown, except for a few direct measurements from deep ice core drill sites. Using the Ice Sheet System Model (ISSM), with ice dynamics coupled to a subglacial hydrology model, we investigate the possibility of initiating NEGIS by inserting heat flux anomalies with various locations and intensities. In our model experiment, a minimum heat flux value of 970 mW m−2 located close to the East Greenland Ice-core Project (EGRIP) is required locally to reproduce the observed NEGIS velocities, giving basal melt rates consistent with previous estimates. The value cannot be attributed to geothermal heat flux alone and we suggest hydrothermal circulation as a potential explanation for the high local heat flux. By including high heat flux and the effect of water on sliding, we successfully reproduce the main characteristics of NEGIS in an ice sheet model without using data assimilation.

  • Open Access English
    Authors: 
    Spangenberg, Ines; Overduin, Pier Paul; Damm, Ellen; Bussmann, Ingeborg; Meyer, Hanno; Liebner, Susanne; Angelopoulos, Michael; Biskaborn, Boris K.; Grigoriev, Mikhail N.; Grosse, Guido;
    Project: EC | PETA-CARB (338335)

    The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere but the methane flux is restricted by an ice cover for most of the year. We provide insights into the methane pathways in the winter ice cover on three different water bodies in a continuous permafrost region in Siberia. The first is a bay underlain by submarine permafrost (Tiksi Bay, TB), the second a shallow thermokarst lagoon (Polar Fox, PF) and the third a land-locked, freshwater thermokarst lake (Goltsovoye Lake, GL). In total, 11 ice cores were analyzed as records of the freezing process and methane pathways during the winter season. In TB, the hydrochemical parameters indicate an open system freezing. In contrast, PF was classified as a semi-closed system, where ice growth eventually cuts off exchange between the lagoon and the ocean. The GL is a closed system without connections to other water bodies. Ice on all water bodies was mostly methane-supersaturated with respect to the atmospheric equilibrium concentration, except of three cores from the lake. Generally, the TB ice had low methane concentrations (3.48–8.44 nM) compared to maximum concentrations of the PF ice (2.59–539 nM) and widely varying concentrations in the GL ice (0.02–14817 nM). Stable delta13CCH4 isotope signatures indicate that methane above the ice-water interface was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration in the ice of PF. We conclude that methane oxidation in ice may decrease methane concentrations during winter. Therefore, understanding seasonal effects to methane pathways in Arctic saline influenced or freshwater systems is critical to anticipate permafrost carbon feedbacks in course of global warming.

  • Open Access English
    Authors: 
    Smith-Johnsen, Silje; Fleurian, Basile; Schlegel, Nicole; Seroussi, Helene; Nisanciolgu, Kerim;
    Project: EC | ICE2ICE (610055)

    The Northeast Greenland Ice Stream (NEGIS) currently drains more than 10 % of the Greenland Ice Sheet area, and has recently undergone significant dynamic changes. It is therefore critical to accurately represent this feature when assessing the future contribution of Greenland to sea level rise. At present, NEGIS is reproduced in ice sheet models by inferring basal conditions using observed surface velocities. This approach helps estimate conditions at the base of the ice sheet, but cannot be used to estimate the evolution of basal drag in time, so it is not a good representation of the evolution of the ice sheet in future climate warming scenarios. NEGIS is suggested to be initiated by a geothermal heat flux anomaly close to the ice divide, left behind by the movement of Greenland over the Icelandic plume. However, the heat flux underneath the ice sheet is largely unknown, except for a few direct measurements from deep ice core drill sites. Using the Ice Sheet System Model (ISSM), with ice dynamics coupled to a subglacial hydrology model, we investigate the possibility of initiating NEGIS by inserting hotspots with various locations and intensities. We find that a minimum geothermal heat flux value of 970 mW/m2 located close to EastGRIP is required locally to reproduce the observed NEGIS velocities, consistent with previous estimates. By including high geothermal heat flux and the effect of water on sliding, we successfully reproduce the main characteristics of NEGIS in an ice sheet model without using data assimilation.

  • Open Access English
    Authors: 
    Seroussi, Hélène; Nowicki, Sophie; Simon, Erika; Abe-Ouchi, Ayako; Albrecht, Torsten; Brondex, Julien; Cornford, Stephen; Dumas, Christophe; Gillet-Chaulet, Fabien; Goelzer, Heiko; +29 more
    Project: EC | ACCLIMATE (339108), ANR | TROIS-AS (ANR-15-CE01-0005), EC | NACLIM (308299), NSF | The Management and Operat... (1852977), NSF | Collaborative Research: E... (1443229)

    Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.

  • Open Access English
    Authors: 
    Rees Jones, David W.; Wells, Andrew J.;
    Project: EC | SEA ICE CFD (618610), UKRI | Computational tools for m... (NE/I026995/1), UKRI | Mantle volatiles: process... (NE/M000427/1)

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  • Open Access English
    Authors: 
    Plach, Andreas; Nisancioglu, Kerim H.; Langebroek, Petra M.; Born, Andreas;
    Project: EC | ICE2ICE (610055)

    The Greenland ice sheet (GrIS) contributes increasingly to global sea level rise and its past history is a valuable reference for future sea level projections. We present ice sheet simulations for the Eemian interglacial period (~ 125,000 years ago), the period with the most recent warmer-than-present summer climate over Greenland. The evolution of the Eemian GrIS is simulated with a 3D higher-order ice sheet model forced with surface mass balance (SMB) derived from regional climate simulations. Sensitivity experiments with different SMB, basal friction, and ice flow approximations are discussed. We find that the SMB forcing is the controlling factor setting the Eemian minimum ice volume, emphasizing the importance of a reliable SMB model. Our results suggest that when estimating the contribution from the GrIS to sea level rise during warm periods, such as the Eemian interglacial period, the SMB forcing is more important than the representation of ice flow.

  • Open Access English
    Authors: 
    Helsen, M. M.; Wal, R. S. W.; Broeke, M. R.; Berg, W. J.; Oerlemans, J.;
    Project: EC | ICE2SEA (226375)

    It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  • Open Access English
    Authors: 
    Fettweis, X.; Franco, B.; Tedesco, M.; Angelen, J. H.; Lenaerts, J. T. M.; Broeke, M. R.; Gallée, H.;
    Project: EC | ICE2SEA (226375)

    To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.

  • Open Access English
    Authors: 
    Kuipers Munneke, P.; Broeke, M. R.; King, J. C.; Gray, T.; Reijmer, C. H.;
    Project: EC | ICE2SEA (226375)

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
38 Research products, page 1 of 4
  • Open Access English
    Authors: 
    Kajanto, Karita; Straneo, Fiammetta; Nisancioglu, Kerim;
    Project: EC | ICE2ICE (610055)

    The role of icebergs in narrow fjords hosting marine terminating glaciers in Greenland is poorly understood, even though icebergs provide a substantial freshwater flux that can exceed the subglacial discharge. Iceberg melt is distributed at depth, contributing to fjord stratification, thus impacting melt and dynamics of the glacier front. We model the high-silled Ilulissat Icefjord in Western Greenland with the MITgcm ocean model, using the IceBerg package to study the effect of icebergs on fjord properties, and compare our results with available observations from 2014. We find the subglacial discharge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Icebergs are necessary to include to correctly understand the properties of Ilulissat Icefjord, since they modify the fjord in three main ways: First, icebergs cool and freshen the water column within their vertical extent; Second, icebergs depress the neutral buoyancy depth of the plume and the outflow route of glacially modified water; Third, icebergs modify the deep basin, below their vertical extent, due to both increased entrainment of glacially modified water into the fjord, and iceberg modification of the incoming ambient water. Furthermore, the depressed neutral buoyancy depth of the plume limits melt to the deep section of the front of Sermeq Kujalleq (Jakobshavn Isbræ) even during peak summer, and thus promotes undercutting. We postulate that the impact of icebergs on the neutral buoyancy depth of the plume is a key mechanism connecting iceberg melange and glacier calving, independent of mechanical support.

  • Open Access English
    Authors: 
    Smith-Johnsen, Silje; Fleurian, Basile; Schlegel, Nicole; Seroussi, Helene; Nisancioglu, Kerim;
    Project: EC | ICE2ICE (610055)

    The Northeast Greenland Ice Stream (NEGIS) currently drains more than 10 % of the Greenland Ice Sheet area and has recently undergone significant dynamic changes. It is therefore critical to accurately represent this feature when assessing the future contribution of Greenland to sea level rise. At present, NEGIS is reproduced in ice sheet models by inferring basal conditions using observed surface velocities. This approach helps estimate conditions at the base of the ice sheet but cannot be used to estimate the evolution of basal drag in time, so it is not a good representation of the evolution of the ice sheet in future climate warming scenarios. NEGIS is suggested to be initiated by a geothermal heat flux anomaly close to the ice divide, left behind by the movement of Greenland over the Icelandic plume. However, the heat flux underneath the ice sheet is largely unknown, except for a few direct measurements from deep ice core drill sites. Using the Ice Sheet System Model (ISSM), with ice dynamics coupled to a subglacial hydrology model, we investigate the possibility of initiating NEGIS by inserting heat flux anomalies with various locations and intensities. In our model experiment, a minimum heat flux value of 970 mW m−2 located close to the East Greenland Ice-core Project (EGRIP) is required locally to reproduce the observed NEGIS velocities, giving basal melt rates consistent with previous estimates. The value cannot be attributed to geothermal heat flux alone and we suggest hydrothermal circulation as a potential explanation for the high local heat flux. By including high heat flux and the effect of water on sliding, we successfully reproduce the main characteristics of NEGIS in an ice sheet model without using data assimilation.

  • Open Access English
    Authors: 
    Spangenberg, Ines; Overduin, Pier Paul; Damm, Ellen; Bussmann, Ingeborg; Meyer, Hanno; Liebner, Susanne; Angelopoulos, Michael; Biskaborn, Boris K.; Grigoriev, Mikhail N.; Grosse, Guido;
    Project: EC | PETA-CARB (338335)

    The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere but the methane flux is restricted by an ice cover for most of the year. We provide insights into the methane pathways in the winter ice cover on three different water bodies in a continuous permafrost region in Siberia. The first is a bay underlain by submarine permafrost (Tiksi Bay, TB), the second a shallow thermokarst lagoon (Polar Fox, PF) and the third a land-locked, freshwater thermokarst lake (Goltsovoye Lake, GL). In total, 11 ice cores were analyzed as records of the freezing process and methane pathways during the winter season. In TB, the hydrochemical parameters indicate an open system freezing. In contrast, PF was classified as a semi-closed system, where ice growth eventually cuts off exchange between the lagoon and the ocean. The GL is a closed system without connections to other water bodies. Ice on all water bodies was mostly methane-supersaturated with respect to the atmospheric equilibrium concentration, except of three cores from the lake. Generally, the TB ice had low methane concentrations (3.48–8.44 nM) compared to maximum concentrations of the PF ice (2.59–539 nM) and widely varying concentrations in the GL ice (0.02–14817 nM). Stable delta13CCH4 isotope signatures indicate that methane above the ice-water interface was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration in the ice of PF. We conclude that methane oxidation in ice may decrease methane concentrations during winter. Therefore, understanding seasonal effects to methane pathways in Arctic saline influenced or freshwater systems is critical to anticipate permafrost carbon feedbacks in course of global warming.

  • Open Access English
    Authors: 
    Smith-Johnsen, Silje; Fleurian, Basile; Schlegel, Nicole; Seroussi, Helene; Nisanciolgu, Kerim;
    Project: EC | ICE2ICE (610055)

    The Northeast Greenland Ice Stream (NEGIS) currently drains more than 10 % of the Greenland Ice Sheet area, and has recently undergone significant dynamic changes. It is therefore critical to accurately represent this feature when assessing the future contribution of Greenland to sea level rise. At present, NEGIS is reproduced in ice sheet models by inferring basal conditions using observed surface velocities. This approach helps estimate conditions at the base of the ice sheet, but cannot be used to estimate the evolution of basal drag in time, so it is not a good representation of the evolution of the ice sheet in future climate warming scenarios. NEGIS is suggested to be initiated by a geothermal heat flux anomaly close to the ice divide, left behind by the movement of Greenland over the Icelandic plume. However, the heat flux underneath the ice sheet is largely unknown, except for a few direct measurements from deep ice core drill sites. Using the Ice Sheet System Model (ISSM), with ice dynamics coupled to a subglacial hydrology model, we investigate the possibility of initiating NEGIS by inserting hotspots with various locations and intensities. We find that a minimum geothermal heat flux value of 970 mW/m2 located close to EastGRIP is required locally to reproduce the observed NEGIS velocities, consistent with previous estimates. By including high geothermal heat flux and the effect of water on sliding, we successfully reproduce the main characteristics of NEGIS in an ice sheet model without using data assimilation.

  • Open Access English
    Authors: 
    Seroussi, Hélène; Nowicki, Sophie; Simon, Erika; Abe-Ouchi, Ayako; Albrecht, Torsten; Brondex, Julien; Cornford, Stephen; Dumas, Christophe; Gillet-Chaulet, Fabien; Goelzer, Heiko; +29 more
    Project: EC | ACCLIMATE (339108), ANR | TROIS-AS (ANR-15-CE01-0005), EC | NACLIM (308299), NSF | The Management and Operat... (1852977), NSF | Collaborative Research: E... (1443229)

    Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.

  • Open Access English
    Authors: 
    Rees Jones, David W.; Wells, Andrew J.;
    Project: EC | SEA ICE CFD (618610), UKRI | Computational tools for m... (NE/I026995/1), UKRI | Mantle volatiles: process... (NE/M000427/1)

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  • Open Access English
    Authors: 
    Plach, Andreas; Nisancioglu, Kerim H.; Langebroek, Petra M.; Born, Andreas;
    Project: EC | ICE2ICE (610055)

    The Greenland ice sheet (GrIS) contributes increasingly to global sea level rise and its past history is a valuable reference for future sea level projections. We present ice sheet simulations for the Eemian interglacial period (~ 125,000 years ago), the period with the most recent warmer-than-present summer climate over Greenland. The evolution of the Eemian GrIS is simulated with a 3D higher-order ice sheet model forced with surface mass balance (SMB) derived from regional climate simulations. Sensitivity experiments with different SMB, basal friction, and ice flow approximations are discussed. We find that the SMB forcing is the controlling factor setting the Eemian minimum ice volume, emphasizing the importance of a reliable SMB model. Our results suggest that when estimating the contribution from the GrIS to sea level rise during warm periods, such as the Eemian interglacial period, the SMB forcing is more important than the representation of ice flow.

  • Open Access English
    Authors: 
    Helsen, M. M.; Wal, R. S. W.; Broeke, M. R.; Berg, W. J.; Oerlemans, J.;
    Project: EC | ICE2SEA (226375)

    It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  • Open Access English
    Authors: 
    Fettweis, X.; Franco, B.; Tedesco, M.; Angelen, J. H.; Lenaerts, J. T. M.; Broeke, M. R.; Gallée, H.;
    Project: EC | ICE2SEA (226375)

    To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.

  • Open Access English
    Authors: 
    Kuipers Munneke, P.; Broeke, M. R.; King, J. C.; Gray, T.; Reijmer, C. H.;
    Project: EC | ICE2SEA (226375)

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.