- home
- Advanced Search
3 Research products, page 1 of 1
Loading
- Other research product . 2017Open Access EnglishAuthors:Bennett, Scott; Wernberg, Thomas; de Bettignies, Thibaut;Bennett, Scott; Wernberg, Thomas; de Bettignies, Thibaut;Publisher: Frontiers Media S.A.Project: EC | DPaTh-To-Adapt (659246)
Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions) have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata) were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE). Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.
- Other research product . 2016Open Access EnglishAuthors:Newton, Alice; Elliott, Michael;Newton, Alice; Elliott, Michael;Publisher: Frontiers Media S.A.Project: EC | DEVOTES (308392)
This paper fulfils a gap in environmental management by producing a typology of stakeholders for effective participatory processes and co-design of solutions to complex social–environmental issues and then uses this typology for a stepwise roadmap methodology for balanced and productive stakeholder engagement. Definitions are given of terminology that is frequently used interchangeably such as “stakeholders,” “social actors,” and “interested parties.” Whilst this analysis comes from a marine perspective, it is relevant to all environments and the means of tackling environmental problems. Eleven research questions about participative processes are addressed, based on more than 30 years of experience in water, estuarine, coastal, and marine management. A stepwise roadmap, supported by illustrative tables based on case-studies, shows how a balanced stakeholder selection and real engagement may be achieved. The paper brings these together in the context of several up-to-date concepts such as complex, nested governance, the 10 tenets for integrated, successful, and sustainable marine management, the System Approach Framework and the evolution of DPSIR into DAPSI(W)R(M) framework. Examples given are based on the implementation of the Marine Strategy Framework Directive, the Water Framework Directive, the Environmental Impact Assessment Directive, the Framework Directive for Maritime Spatial Planning, as well as for Regional Sea Conventions. The paper also shows how tools that have been developed in recent projects can be put to use to implement policy and maximize the effectiveness of stakeholder participation.
- Other research product . 2016Open Access EnglishAuthors:Aylagas, Eva; Mendibil, Iñaki; Borja, Ángel; Rodríguez-Ezpeleta, Naiara;Aylagas, Eva; Mendibil, Iñaki; Borja, Ángel; Rodríguez-Ezpeleta, Naiara;
handle: 11329/1016
Publisher: Frontiers Media S.A.Project: EC | DEVOTES (308392)Metabarcoding is an accurate and cost-effective technique that allows for simultaneous taxonomic identification of multiple environmental samples. Application of this technique to marine benthic macroinvertebrate biodiversity assessment for biomonitoring purposes requires standardization of laboratory and data analysis procedures. In this context, protocols for creation and sequencing of amplicon libraries and their related bioinformatics analysis have been recently published. However, a standardized protocol describing all previous steps (i.e., processing and manipulation of environmental samples for macroinvertebrate community characterization) is lacking. Here, we provide detailed procedures for benthic environmental sample collection, processing, enrichment for macroinvertebrates, homogenization, and subsequent DNA extraction for metabarcoding analysis. Since this is the first protocol of this kind, it should be of use to any researcher in this field, having the potential for improvement. Refereed Guide 2016-06-15
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
3 Research products, page 1 of 1
Loading
- Other research product . 2017Open Access EnglishAuthors:Bennett, Scott; Wernberg, Thomas; de Bettignies, Thibaut;Bennett, Scott; Wernberg, Thomas; de Bettignies, Thibaut;Publisher: Frontiers Media S.A.Project: EC | DPaTh-To-Adapt (659246)
Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions) have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata) were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE). Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.
- Other research product . 2016Open Access EnglishAuthors:Newton, Alice; Elliott, Michael;Newton, Alice; Elliott, Michael;Publisher: Frontiers Media S.A.Project: EC | DEVOTES (308392)
This paper fulfils a gap in environmental management by producing a typology of stakeholders for effective participatory processes and co-design of solutions to complex social–environmental issues and then uses this typology for a stepwise roadmap methodology for balanced and productive stakeholder engagement. Definitions are given of terminology that is frequently used interchangeably such as “stakeholders,” “social actors,” and “interested parties.” Whilst this analysis comes from a marine perspective, it is relevant to all environments and the means of tackling environmental problems. Eleven research questions about participative processes are addressed, based on more than 30 years of experience in water, estuarine, coastal, and marine management. A stepwise roadmap, supported by illustrative tables based on case-studies, shows how a balanced stakeholder selection and real engagement may be achieved. The paper brings these together in the context of several up-to-date concepts such as complex, nested governance, the 10 tenets for integrated, successful, and sustainable marine management, the System Approach Framework and the evolution of DPSIR into DAPSI(W)R(M) framework. Examples given are based on the implementation of the Marine Strategy Framework Directive, the Water Framework Directive, the Environmental Impact Assessment Directive, the Framework Directive for Maritime Spatial Planning, as well as for Regional Sea Conventions. The paper also shows how tools that have been developed in recent projects can be put to use to implement policy and maximize the effectiveness of stakeholder participation.
- Other research product . 2016Open Access EnglishAuthors:Aylagas, Eva; Mendibil, Iñaki; Borja, Ángel; Rodríguez-Ezpeleta, Naiara;Aylagas, Eva; Mendibil, Iñaki; Borja, Ángel; Rodríguez-Ezpeleta, Naiara;
handle: 11329/1016
Publisher: Frontiers Media S.A.Project: EC | DEVOTES (308392)Metabarcoding is an accurate and cost-effective technique that allows for simultaneous taxonomic identification of multiple environmental samples. Application of this technique to marine benthic macroinvertebrate biodiversity assessment for biomonitoring purposes requires standardization of laboratory and data analysis procedures. In this context, protocols for creation and sequencing of amplicon libraries and their related bioinformatics analysis have been recently published. However, a standardized protocol describing all previous steps (i.e., processing and manipulation of environmental samples for macroinvertebrate community characterization) is lacking. Here, we provide detailed procedures for benthic environmental sample collection, processing, enrichment for macroinvertebrates, homogenization, and subsequent DNA extraction for metabarcoding analysis. Since this is the first protocol of this kind, it should be of use to any researcher in this field, having the potential for improvement. Refereed Guide 2016-06-15
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.