- home
- Advanced Search
Filters
Clear AllLoading
apps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | SafePASSAuthors: Stefanidis Fotios; Stefanou Evangelos; Boulougouris Evangelos; Karagiannidis Lazaros; +4 AuthorsStefanidis Fotios; Stefanou Evangelos; Boulougouris Evangelos; Karagiannidis Lazaros; Sotiralis Panagiotis; Annetis Emmanouil; Balet Olivier; Veltsistas Panagiotis;Despite the current high level of safety and the efforts to make passenger ships resilient to most fire and flooding scenarios, there are still gaps and challenges in the marine emergency response and ship evacuation processes. Those challenges arise from the fact that both processes are complex, multi-variable problems that rely on parameters involving not only people and technology but also procedural and managerial issues. SafePASS Project, funded under EU’s Horizon 2020 Research and Innovation Programme, is set to radically redefine the evacuation processes by introducing new equipment, expanding the capabilities of legacy systems on-board, proposing new Life-Saving Appliances and ship layouts, and challenging the current international regulations, hence reducing the uncertainty, and increasing the efficiency in all the stages of ship evacuation and abandonment process.
https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::ce9e01dac1fb23d0c8b4d421b22e073a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::ce9e01dac1fb23d0c8b4d421b22e073a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | POSEIDOMMGalgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; Steinhoff, Tobias; Loiselle, Steven A.;Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.
https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::9fe7f4e1a38544b2e82c57410e087f46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::9fe7f4e1a38544b2e82c57410e087f46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | OPTIMARAuthors: Martín-González, Elena; Alskaf, Ebraham; Chiribiri, Amedeo; Casaseca-de-la-Higuera, Pablo; +3 AuthorsMartín-González, Elena; Alskaf, Ebraham; Chiribiri, Amedeo; Casaseca-de-la-Higuera, Pablo; Alberola-López, Carlos; Nunes, Rita; Correia, Teresa;First-pass perfusion cardiac magnetic resonance (FPP-CMR) is becoming essential to detect blow flow anomalies. However, the need for real-time acquisitions limits the achievable spatial resolution and coverage of the heart. To keep both within a reasonable range, FPP-CMR needs to be accelerated. A SElf-Supervised aCcelerated REconsTruction (SECRET) DL framework is presented to speed-up reconstruction of FPP-CMR images from undersampled (k,t)-space data. The physical reconstruction models are used to train deep neural networks without requiring fully sampled images. SECRET achieves good quality reconstructions at a variety of acceleration rates, with significant speed-ups compared to the state-of-the-art.
https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::6cfe97a910a5ea7c65d000150b509747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::6cfe97a910a5ea7c65d000150b509747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | SUFISAAuthors: Katharina Biely;Katharina Biely;This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6284448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6284448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA NWO | TRAFFIC: Transatlantic fl..., FCT | CEECIND/00752/2018/CP1534/CT0011, EC | PORTWIMSAuthors: Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; +4 AuthorsGuerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Data refer to export fluxes of carbonate produced by calcifying phytoplankton (coccolithophores), and coccolith-CaCO₃ percent contribution to total carbonate flux across the tropical North Atlantic, from upwelling affected NW Africa, via three ocean sites along 12°N to the Caribbean. Sampling was undertaken by means of a spatial array of four time-series sediment traps (i.e., CB at 21°N 20°W; M1U at 12°N 23°W; M2U at 14°N 37°W; M4U at 12°N 49°W; Guerreiro et al., 2021) collecting particle fluxes in two-week intervals, from October 2012 to February 2014, allowing to track temporal changes along the southern margin of the North Atlantic central gyre. Auxiliary PIC (Particulate Inorganic Carbon) data from NASA's Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov) are also provided for the sediment sampling period at all four trap sites. Particle flux data (mg/m²/d) of CaCO₃, organic matter, particulate organic carbon (POC), biogenic silica (bSiO₂) and unspecified residual fraction are provided for sediment trap site CB.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | TRIATLASAuthors: Brandt, Peter; Krahmann, Gerd;Brandt, Peter; Krahmann, Gerd;Comparison of the equatorial upwelling system, the northern coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::024942100b6bb18367ebc7ff99b415b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::024942100b6bb18367ebc7ff99b415b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | AtlantECOHorstmann, Jochen; Carrasco, Ruben; Calil, Paulo H R; Iudicone, Daniele; Pesant, Stephane; Erta, J M;During the project Mission Microbiomes with the RV Tara (August to September 2021) 43 Lagrangian drifters were deployed off the eastern coast of Brazil to monitor the surface flow. The drifters were designed and built at Hereon to follow the upper surface flow (upper ~ 50 cm). These Hereon drifter consist of a 20 cm x 7.5 cm long tube, with a floatation ring at the top. Furthermore, a drogue of 35 cm in both length and diameter is attached, via a flexible cord, in a distance of 20 cm to the tube. When deployed about 5 cm protrude from the water surface, resulting in a ratio of drag area in to drag area outside the water of 21. The tube contains a battery pack and an electronic board, which acquires and reports the GPS position every 5 minutes via a global satellite network in near real time. Table 1 in the attached document summarizes for all deployed Hereon Drifters their deployment time as well as operation time and total covered distance.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::58246b599480465e503a674952f87df3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::58246b599480465e503a674952f87df3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA UKRI | ISO-THERM: Isotopic testi..., EC | ICORDACrotti, Ilaria; Quiquet, Aurélien; Landais, Amaëlle; Stenni, Barbara; Wilson, David; Severi, Mirko; Mulvaney, Rob; Wilhelms, Frank; Barbante, Carlo; Frezzotti, Massimo;The data here described are presented in the submitted paper Response of the Wilkes Subglacial Basin Ice Sheet to Southern Ocean Warming During Late Pleistocene Interglacials by Crotti et al. This data set includes new high resolution measurements of d-excess, d18O and ssNa+ for the Antarctic TALDICE ice core (Latitude: -72.783330, Longitude: 159.066670, Elevation: 2315.0 m). The new data set covers the interglacials periods of MIS 5.5, MIS 7.5 and MIS 9.3 (1486 m depth - 1548 m depth). The data are drawn on the TALDICE deep1 chronology (Crotti et al. 2021). The d-excess (d = δD − 8 × δ18O) (permill) record covers the periods MIS 5.5 , MIS 7.5 and 9.3 MIS is at 5 cm resolution and spans the following age-depths intervals: • MIS 5.5. Between 1378.5 and 1421.65 m depth, 110-135 ka • MIS 7.5. Between 1521.85 and 1524.5 m depth, 243-248 ka • MIS 9.3. Between 1541.80 and 1547.90 m depth, 320-343 ka The d18O record (permill) covers the periods MIS 5.5 , MIS 7.5 and 9.3 MIS is at 5 cm resolution and spans the following age-depths intervals: • MIS 7.5. Between 1521.85 and 1524.5 m depth, 243-248 ka • MIS 9.3. Between 1541.80 and 1547.90 m depth, 320-343 ka The ssNa+ fluxes record covers the periods MIS 5.5 , MIS 7.5 and 9.3 MIS is at 8 cm resolution and pans the following age-depths intervals: • MIS 7.5. Between 1521.81 and 1524.54 m depth, 243-248 ka • MIS 9.3. Between 1541.73 and 1547.96 m depth, 320-343 ka The d18O and dD (non presented here) to calculate the d-excess were analysed in Italy (University of Venice) and France (LSCE) using the Cavity Ring Down Spectroscopy (CRDS) technique. Analyses were performed using a Picarro isotope water analyser (L2130-i version for both laboratories). The data were calibrated using a three-point linear calibration with three lab-standards that were themselves calibrated versus Standard Mean Ocean Water (SMOW). The average precision for the δ18O and δD measurements is 0.1 and 0.7 ‰, respectively. The concentrations of ssNa+ were measured on TALDICE ice samples at 8 cm resolution by classical ion chromatography on discrete samples collected using a melting device connected to an auto-sampler for the MIS 7.5 and MIS 9.3 whereas Continuous Flow Analysis (CFA) was applied for MIS 5.5 samples. The total deposition ssNa+ flux was calculated multiplying the measured ice concentration of ssNa+ by the reconstructed accumulation rate. The accumulation rates were derived from the accumulation rates were obtained from the TALDICE deep1 age scale (Crotti et al. 2021).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5f82d4589d5319c895f2e28b3a04d317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5f82d4589d5319c895f2e28b3a04d317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | ATLAS, EC | iAtlantic, EC | MIDASCarreiro-Silva, Marina; Martins, Ines; Raimundo, Joana; Caetano, Miguel; Bettencourt, Raul; Cerqueira, Teresa; Colaço, Ana;We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Corals were collected from the summit of Condor Seamount (Azores, NE Atlantic) at depths between 185-210 m in August 2014. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. PMS particles were obtained by grinding PMS inactive chimney rocks collected at the hydrothermal vent field Lucky Strike. Both particle types were delivered at a concentration of 25 mg L-1. The putative effects of PMS particles were evaluated through measurements of the coral physiological responses at the levels of the organism (oxygen consumption, ammonium excretion), tissue (bioaccumulation of metals) and cell (enzyme activity and gene expression).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::1c6ee89960f66e14eb64b2c6188f3071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::1c6ee89960f66e14eb64b2c6188f3071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | SUMMER, EC | TRIATLASAuthors: Sarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; +4 AuthorsSarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; Armengól, Laia; Medina-Suárez, Ione; Castellón, Arturo; Hernández-León, Santiago;Physical oceanography variables and carbon remineralisation (juveniles/adults of Cyclothone species and Argyropelecus hemigymnus) were analysed during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the depth, temperature, and conductivity which were recorded from surface to a maximum depth of 2000 m using a SeaBird SBE 25plus CTD equipped with a Seabird-43 Dissolved Oxygen sensor and a Seapoint Fluorometer. Values of numerical abundance, biomass, specific ETS activity, specific respiraton and respiration flux data analyzed from Northwest Africa (20° N, 20° W) to the South of Iceland are presented. A. hemigymnus specimens were collected using a ''Mesopelagos” net (5 x7 m mouth opening, 58 m total length) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers. However, Cyclothone specimens were collected using the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS-1 m²) zooplankton net with a 0.2 mm mesh size and with several nets for collecting samples from 8 different depth layers. The Mesopelagos catches were sorted out and identified on board to the lowest possible taxon, and specimens selected for Electron Transfer System (ETS) analyses were immediately frozen in liquid nitrogen for later analysis in the laboratory. MOCNESS samples were preserved in 5% buffered formalin, and specimens were sorted out later in the laboratory. Stomiiforms respiration in the meso- and bathypelagic zones of the ocean were estimated along the transect. Abundance, biomass, specific ETS activity, specific respiration and respiration are given by layer between e.g. 100 m and 1000 m depth (MOCNESS net, 1900–1600 m, 1600–1300 m, 1300–1000 m, 1000–700 m, 700–400 m, 400–200 m, 200–100 m and 100–0 m; Mesopelagos, 1900–1200 m, 1200–800 m, 800–500 m, 500–200 m and 200–0 m).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::79c9b3d22f60fa3cce6d973338a7df4b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::79c9b3d22f60fa3cce6d973338a7df4b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | SafePASSAuthors: Stefanidis Fotios; Stefanou Evangelos; Boulougouris Evangelos; Karagiannidis Lazaros; +4 AuthorsStefanidis Fotios; Stefanou Evangelos; Boulougouris Evangelos; Karagiannidis Lazaros; Sotiralis Panagiotis; Annetis Emmanouil; Balet Olivier; Veltsistas Panagiotis;Despite the current high level of safety and the efforts to make passenger ships resilient to most fire and flooding scenarios, there are still gaps and challenges in the marine emergency response and ship evacuation processes. Those challenges arise from the fact that both processes are complex, multi-variable problems that rely on parameters involving not only people and technology but also procedural and managerial issues. SafePASS Project, funded under EU’s Horizon 2020 Research and Innovation Programme, is set to radically redefine the evacuation processes by introducing new equipment, expanding the capabilities of legacy systems on-board, proposing new Life-Saving Appliances and ship layouts, and challenging the current international regulations, hence reducing the uncertainty, and increasing the efficiency in all the stages of ship evacuation and abandonment process.
https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::ce9e01dac1fb23d0c8b4d421b22e073a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::ce9e01dac1fb23d0c8b4d421b22e073a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | POSEIDOMMGalgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; Steinhoff, Tobias; Loiselle, Steven A.;Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.
https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::9fe7f4e1a38544b2e82c57410e087f46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::9fe7f4e1a38544b2e82c57410e087f46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | OPTIMARAuthors: Martín-González, Elena; Alskaf, Ebraham; Chiribiri, Amedeo; Casaseca-de-la-Higuera, Pablo; +3 AuthorsMartín-González, Elena; Alskaf, Ebraham; Chiribiri, Amedeo; Casaseca-de-la-Higuera, Pablo; Alberola-López, Carlos; Nunes, Rita; Correia, Teresa;First-pass perfusion cardiac magnetic resonance (FPP-CMR) is becoming essential to detect blow flow anomalies. However, the need for real-time acquisitions limits the achievable spatial resolution and coverage of the heart. To keep both within a reasonable range, FPP-CMR needs to be accelerated. A SElf-Supervised aCcelerated REconsTruction (SECRET) DL framework is presented to speed-up reconstruction of FPP-CMR images from undersampled (k,t)-space data. The physical reconstruction models are used to train deep neural networks without requiring fully sampled images. SECRET achieves good quality reconstructions at a variety of acceleration rates, with significant speed-ups compared to the state-of-the-art.
https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::6cfe97a910a5ea7c65d000150b509747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::6cfe97a910a5ea7c65d000150b509747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 EnglishZenodo EC | SUFISAAuthors: Katharina Biely;Katharina Biely;This is the English version of the informed consent that has been used for staekholder interactions. Similar forms have been used for focus groups and workshops.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6284448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6284448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA NWO | TRAFFIC: Transatlantic fl..., FCT | CEECIND/00752/2018/CP1534/CT0011, EC | PORTWIMSAuthors: Guerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; +4 AuthorsGuerreiro, Catarina V; Baumann, Karl-Heinz; Brummer, Geert-Jan A; Valente, André; Fischer, Gerhard; Ziveri, Patrizia; Brotas, Vanda; Stuut, Jan-Berend W;Data refer to export fluxes of carbonate produced by calcifying phytoplankton (coccolithophores), and coccolith-CaCO₃ percent contribution to total carbonate flux across the tropical North Atlantic, from upwelling affected NW Africa, via three ocean sites along 12°N to the Caribbean. Sampling was undertaken by means of a spatial array of four time-series sediment traps (i.e., CB at 21°N 20°W; M1U at 12°N 23°W; M2U at 14°N 37°W; M4U at 12°N 49°W; Guerreiro et al., 2021) collecting particle fluxes in two-week intervals, from October 2012 to February 2014, allowing to track temporal changes along the southern margin of the North Atlantic central gyre. Auxiliary PIC (Particulate Inorganic Carbon) data from NASA's Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov) are also provided for the sediment sampling period at all four trap sites. Particle flux data (mg/m²/d) of CaCO₃, organic matter, particulate organic carbon (POC), biogenic silica (bSiO₂) and unspecified residual fraction are provided for sediment trap site CB.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::3c66701df5a8d3ec55c310b267c7d0de&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | TRIATLASAuthors: Brandt, Peter; Krahmann, Gerd;Brandt, Peter; Krahmann, Gerd;Comparison of the equatorial upwelling system, the northern coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::024942100b6bb18367ebc7ff99b415b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::024942100b6bb18367ebc7ff99b415b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | AtlantECOHorstmann, Jochen; Carrasco, Ruben; Calil, Paulo H R; Iudicone, Daniele; Pesant, Stephane; Erta, J M;During the project Mission Microbiomes with the RV Tara (August to September 2021) 43 Lagrangian drifters were deployed off the eastern coast of Brazil to monitor the surface flow. The drifters were designed and built at Hereon to follow the upper surface flow (upper ~ 50 cm). These Hereon drifter consist of a 20 cm x 7.5 cm long tube, with a floatation ring at the top. Furthermore, a drogue of 35 cm in both length and diameter is attached, via a flexible cord, in a distance of 20 cm to the tube. When deployed about 5 cm protrude from the water surface, resulting in a ratio of drag area in to drag area outside the water of 21. The tube contains a battery pack and an electronic board, which acquires and reports the GPS position every 5 minutes via a global satellite network in near real time. Table 1 in the attached document summarizes for all deployed Hereon Drifters their deployment time as well as operation time and total covered distance.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::58246b599480465e503a674952f87df3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::58246b599480465e503a674952f87df3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA UKRI | ISO-THERM: Isotopic testi..., EC | ICORDACrotti, Ilaria; Quiquet, Aurélien; Landais, Amaëlle; Stenni, Barbara; Wilson, David; Severi, Mirko; Mulvaney, Rob; Wilhelms, Frank; Barbante, Carlo; Frezzotti, Massimo;The data here described are presented in the submitted paper Response of the Wilkes Subglacial Basin Ice Sheet to Southern Ocean Warming During Late Pleistocene Interglacials by Crotti et al. This data set includes new high resolution measurements of d-excess, d18O and ssNa+ for the Antarctic TALDICE ice core (Latitude: -72.783330, Longitude: 159.066670, Elevation: 2315.0 m). The new data set covers the interglacials periods of MIS 5.5, MIS 7.5 and MIS 9.3 (1486 m depth - 1548 m depth). The data are drawn on the TALDICE deep1 chronology (Crotti et al. 2021). The d-excess (d = δD − 8 × δ18O) (permill) record covers the periods MIS 5.5 , MIS 7.5 and 9.3 MIS is at 5 cm resolution and spans the following age-depths intervals: • MIS 5.5. Between 1378.5 and 1421.65 m depth, 110-135 ka • MIS 7.5. Between 1521.85 and 1524.5 m depth, 243-248 ka • MIS 9.3. Between 1541.80 and 1547.90 m depth, 320-343 ka The d18O record (permill) covers the periods MIS 5.5 , MIS 7.5 and 9.3 MIS is at 5 cm resolution and spans the following age-depths intervals: • MIS 7.5. Between 1521.85 and 1524.5 m depth, 243-248 ka • MIS 9.3. Between 1541.80 and 1547.90 m depth, 320-343 ka The ssNa+ fluxes record covers the periods MIS 5.5 , MIS 7.5 and 9.3 MIS is at 8 cm resolution and pans the following age-depths intervals: • MIS 7.5. Between 1521.81 and 1524.54 m depth, 243-248 ka • MIS 9.3. Between 1541.73 and 1547.96 m depth, 320-343 ka The d18O and dD (non presented here) to calculate the d-excess were analysed in Italy (University of Venice) and France (LSCE) using the Cavity Ring Down Spectroscopy (CRDS) technique. Analyses were performed using a Picarro isotope water analyser (L2130-i version for both laboratories). The data were calibrated using a three-point linear calibration with three lab-standards that were themselves calibrated versus Standard Mean Ocean Water (SMOW). The average precision for the δ18O and δD measurements is 0.1 and 0.7 ‰, respectively. The concentrations of ssNa+ were measured on TALDICE ice samples at 8 cm resolution by classical ion chromatography on discrete samples collected using a melting device connected to an auto-sampler for the MIS 7.5 and MIS 9.3 whereas Continuous Flow Analysis (CFA) was applied for MIS 5.5 samples. The total deposition ssNa+ flux was calculated multiplying the measured ice concentration of ssNa+ by the reconstructed accumulation rate. The accumulation rates were derived from the accumulation rates were obtained from the TALDICE deep1 age scale (Crotti et al. 2021).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5f82d4589d5319c895f2e28b3a04d317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::5f82d4589d5319c895f2e28b3a04d317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | ATLAS, EC | iAtlantic, EC | MIDASCarreiro-Silva, Marina; Martins, Ines; Raimundo, Joana; Caetano, Miguel; Bettencourt, Raul; Cerqueira, Teresa; Colaço, Ana;We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Corals were collected from the summit of Condor Seamount (Azores, NE Atlantic) at depths between 185-210 m in August 2014. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. PMS particles were obtained by grinding PMS inactive chimney rocks collected at the hydrothermal vent field Lucky Strike. Both particle types were delivered at a concentration of 25 mg L-1. The putative effects of PMS particles were evaluated through measurements of the coral physiological responses at the levels of the organism (oxygen consumption, ammonium excretion), tissue (bioaccumulation of metals) and cell (enzyme activity and gene expression).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::1c6ee89960f66e14eb64b2c6188f3071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::1c6ee89960f66e14eb64b2c6188f3071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Collection 2022 EnglishPANGAEA EC | SUMMER, EC | TRIATLASAuthors: Sarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; +4 AuthorsSarmiento-Lezcano, Airam Nauzet; Olivar, M Pilar; Peña, Marian; Landeira, José María; Armengól, Laia; Medina-Suárez, Ione; Castellón, Arturo; Hernández-León, Santiago;Physical oceanography variables and carbon remineralisation (juveniles/adults of Cyclothone species and Argyropelecus hemigymnus) were analysed during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the depth, temperature, and conductivity which were recorded from surface to a maximum depth of 2000 m using a SeaBird SBE 25plus CTD equipped with a Seabird-43 Dissolved Oxygen sensor and a Seapoint Fluorometer. Values of numerical abundance, biomass, specific ETS activity, specific respiraton and respiration flux data analyzed from Northwest Africa (20° N, 20° W) to the South of Iceland are presented. A. hemigymnus specimens were collected using a ''Mesopelagos” net (5 x7 m mouth opening, 58 m total length) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers. However, Cyclothone specimens were collected using the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS-1 m²) zooplankton net with a 0.2 mm mesh size and with several nets for collecting samples from 8 different depth layers. The Mesopelagos catches were sorted out and identified on board to the lowest possible taxon, and specimens selected for Electron Transfer System (ETS) analyses were immediately frozen in liquid nitrogen for later analysis in the laboratory. MOCNESS samples were preserved in 5% buffered formalin, and specimens were sorted out later in the laboratory. Stomiiforms respiration in the meso- and bathypelagic zones of the ocean were estimated along the transect. Abundance, biomass, specific ETS activity, specific respiration and respiration are given by layer between e.g. 100 m and 1000 m depth (MOCNESS net, 1900–1600 m, 1600–1300 m, 1300–1000 m, 1000–700 m, 700–400 m, 400–200 m, 200–100 m and 100–0 m; Mesopelagos, 1900–1200 m, 1200–800 m, 800–500 m, 500–200 m and 200–0 m).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::79c9b3d22f60fa3cce6d973338a7df4b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::79c9b3d22f60fa3cce6d973338a7df4b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu