Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
7 Research products, page 1 of 1

  • European Marine Science
  • Other research products
  • Biogeosciences (BG)
  • Aurora Universities Network

Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Bar, Marijke W.; Ullgren, Jenny E.; Thunnell, Robert C.; Wakeham, Stuart G.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.; Sinninghe Damsté, Jaap S.; Schouten, Stefan;
    Project: EC | DUSTTRAFFIC (311152), EC | DIOLS (339206), NWO | TRAFFIC: Transatlantic fl... (2300175166), NWO | Perturbations of System E... (2300181601)

    In this study we analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the long-chain diol index (LDI) temperature proxy. For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the two other lipid-based temperature proxies TEX86 and U37K′. In addition, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In contrast, the LDI in the Cariaco Basin shows larger seasonal variation, as do the TEX86 and U37K′. Here, the LDI underestimates SST during the warmest months, which is possibly due to summer stratification and the habitat depth of the diol producers deepening to around 20–30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the diol index, as an indicator of upwelling conditions, at three sites: in the eastern Atlantic, potentially linked to Guinea Dome upwelling; in the Cariaco Basin, likely caused by seasonal upwelling; and in the Mozambique Channel, where diol index variations may be driven by upwelling from favorable winds and/or eddy migration.

  • Open Access English
    Authors: 
    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; +12 more
    Project: EC | GREENCYCLESII (238366), EC | COCOS (212196), EC | GEOCARBON (283080), EC | CARBOCHANGE (264879)

    The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea–air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea–air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea–air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.05 Pg C yr−1, and by the Arctic it is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea–air flux of −0.61 ± 0.06 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.

  • Open Access English
    Authors: 
    Jeansson, E.; Bellerby, R. G. J.; Skjelvan, I.; Frigstad, H.; Ólafsdóttir, S. R.; Olafsson, J.;
    Publisher: Copernicus Publications
    Project: EC | EURO-BASIN (264933), EC | CARBOCHANGE (264879), EC | GREENSEAS (265294)

    This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 ± 0.5 and 0.45 ± 0.09 mol m−2 yr−1, respectively, and the annual air–sea uptake of atmospheric CO2 is 4.4 ± 1.1 mol C m−2 yr−1. The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 ± 1.0 mol C m−2 yr−1. The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season.

  • Open Access English
    Authors: 
    Olafsson, J.; Olafsdottir, S. R.; Benoit-Cattin, A.; Danielsen, M.; Arnarson, T. S.; Takahashi, T.;
    Project: EC | EPOCA (211384)

    The Iceland Sea is one part of the Nordic Seas. Cold Arctic Water prevails there and the deep-water is an important source of North Atlantic Deep Water. We have evaluated time series observations of measured pCO2 and total CO2 concentration from discrete seawater samples during 1985–2008 for the surface and 1994–2008 for deep-water, and following changes in response to increasing atmospheric carbon dioxide. The surface pH in winter decreases at a rate of 0.0024 yr−1, which is 50% faster than average yearly rates at two subtropical time series stations, BATS and ESTOC. In the deep-water regime (>1500 m), the rate of pH decline is a quarter of that observed in surface waters. The surface seawater carbonate saturation states (Ω) are about 1.5 for aragonite and 2.5 for calcite, about half of levels found in subtropical surface waters. During 1985–2008, the degree of saturation (Ω) decreased at an average rate of 0.0072 yr−1 for aragonite and 0.012 yr−1 for calcite. The aragonite saturation horizon is currently at 1710 m and shoaling at 4 m yr−1. Based on this rate of shoaling and on the local hypsography, each year another 800 km2 of seafloor becomes exposed to waters that have become undersaturated with respect to aragonite.

  • Open Access English
    Authors: 
    Langer, G.; Nehrke, G.; Probert, I.; Ly, J.; Ziveri, P.;
    Project: NWO | Quaternary marine ecosyst... (2300130622), EC | ASSEMBLE (227799)

    Four strains of the coccolithophore E. huxleyi (RCC1212, RCC1216, RCC1238, RCC1256) were grown in dilute batch culture at four CO2 levels ranging from ~200 μatm to ~1200 μatm. Growth rate, particulate organic carbon content, and particulate inorganic carbon content were measured, and organic and inorganic carbon production calculated. The four strains did not show a uniform response to carbonate chemistry changes in any of the analysed parameters and none of the four strains displayed a response pattern previously described for this species. We conclude that the sensitivity of different strains of E. huxleyi to acidification differs substantially and that this likely has a genetic basis. We propose that this can explain apparently contradictory results reported in the literature.

  • Open Access English
    Authors: 
    Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.;
    Project: EC | GROOM (284321)

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm−3 day−1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm−3 day−1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm−3 day−1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  • Open Access English
    Authors: 
    Dumousseaud, C.; Achterberg, E. P.; Tyrrell, T.; Charalampopoulou, A.; Schuster, U.; Hartman, M.; Hydes, D. J.;
    Project: EC | EPOCA (211384)

    Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 ± 0.5 °C) winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1) and dissolved inorganic carbon (22 ± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006), led to differences in the dissolved oxygen anomaly and the chlorophyll α-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to −4.8 mmol m−2 d−1) showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.