Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.

  • European Marine Science
  • Other research products
  • Recolector de Ciencia Abierta, RECO...

Date (most recent)
arrow_drop_down
  • Authors: Santos, Ricardo; Sabatés, Ana; Ramón, Montserrat; Villanueva, Roger; +3 Authors

    The Marine Biological Reference Collections (CBMR) are located at the Institute of Marine Sciences (ICM-CSIC) in Barcelona, Spain. The CBR are a Unit of Service where around 15000 referenced species are preserved, catalogued and maintained for their study. The most represented marine groups at the CBMR are fish, crustaceans, molluscs and echinoderms, but also other groups are present. The studies based on the CBMR specimens are focused on biodiversity, biogeography, taxonomy (type species), invasive and alien species, and genetic analysis. Several PhD theses have also been carried out in collaboration with the CBMR.The CBMR are a reference point for the marine biodiversity of the Mediterranean Sea, but in their facilities the CBMR also hold specimens from all the oceans (Atlantic, Pacific, Indian, Antarctic and Arctic). The Collections are constantly receiving new specimens and updating. The main sources of specimens are oceanographic surveys and different kind of sampling programs carried out by the research projects run by the ICM-CSIC. However, the CBMR have also received (in the past and currently) different collections donated by naturalists, researchers, other institutions, and particulars. The CBMR were created in 1981, in the earlier history of the ICM-CSIC, by Jaume Rucabado, Domingo Lloris and Concepción Allué. The Collections were later recognized and catalogued by the Spanish Ministry of Culture in 1990. In the last decade, the CBMR initiated a new stage where the information was digitized and the physical preservation of specimens updated to the new rules (such as change from formaldehyde to ethanol). The CBMR are now part of GBIF (Global Biodiversity Information Facility), thus making public and available all data collections and their metadata. We have also incorporated the use of Geographical Information Systems (GIS) to monitor and study the geographical distribution of our specimens and moreover, the CBMR started to act as repository of DNA voucher collections for genetic analyses.As a unit of service of the ICM-CSIC we think that education and outreach of marine science is of crucial importance for the society and for that reason the CBMR take active part in several outreach activities with schools, universities and general public. For more information or details you can visit our webpage (http://cbr.icm.csic.es/en/node) and send us an e-mail (cbr@icm.csic.es). We will be happy to help you.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Decades ago, the presence of extra chromosomes restricted to the male germ line in several grasshopper species was interpreted as recurrent polysomy, as experimental crosses suggested that the extra chromoso- mes were not transmitted from adult male parents to their embryo offspring. Under this hypothesis, polysomy was generated de novo through a nondisjunction for some chromosomes of the standard karyotype. In the current study, I test this hypothesis by analysing 17 families of tandem repeats (TRs) in two males of the grasshopper Chorthippus parallelus, which displays mosaicism for this kind of extra chromosome. According to the de novo polysomy hypothesis, the extra chromosomes should show the same FISH pattern for the TRs analysed as at least one of the A chromosomes. However, three TR families displayed patterns of FISH bands on the standard and extra chromosomes that ruled out the former as a possible source for the latter. Therefore, these extra chromosomes are best interpreted as B chromosomes restricted to the germ line, presumably present in both sexes, which are inherited as such and are not recurrently generated de novo from the A chromosomes. Key words: Extra chromosomes, FISH, polysomy, tandem repeats

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: González González, Aridane; Pérez-Almeida, Norma; Arnone, Veronica; González Santana, David; +2 Authors

    Marine microorganisms like microalgae, can produce organic ligands with the capability to complex trace metals in the ocean such as iron (Fe) and copper (Cu). Among all the possible organic compounds, polyphenols have been measured and identified in the exudates of marine microalgae such as Phaeodactylum tricornutum and Dunaliella tertiolecta. Among all these polyphenols, catechin, sinapic acid, gallic acid and gentisic acid have been studied in terms of Fe complexation via kinetics of formation (kf) and dissociation (kd). The kf of these organic ligands was 1.2x104 - 4.2x105 M−1 s−1 and kd was 1.8x10−4 - 4.4x10−4 s−1. Therefore, the conditional stability constant (log K′Fe′L) was from 7.8 to 9.2. Then, these polyphenols can be considered weak ligands (L2-type). These results demonstrated that the microalgae can excrete functional groups to complex Fe in seawater, increasing its solubility and keeping for longer in solution. This work improves our knowledge about the Fe biogeochemical cycle and characterizes the pool of organic matter in terms of interactions with Fe. 35 1

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bianconi G; Arenas A; Biamonte J; Carr LD; Kahng B; Kertesz J; Kurths J; Lü L; Masoller C; Motter AE; Perc M; Radicchi F; Ramaswamy R; Rodrigues FA; Sales-Pardo M; San Miguel M; Thurner S; Yasseri T;

    The 2021 Nobel Prize in Physics recognized the fundamental role of complex systems in the natural sciences. In order to celebrate this milestone, this editorial presents the point of view of the editorial board of JPhys Complexity on the achievements, challenges, and future prospects of the field. To distinguish the voice and the opinion of each editor, this editorial consists of a series of editor perspectives and reflections on few selected themes. A comprehensive and multi-faceted view of the field of complexity science emerges. We hope and trust that this open discussion will be of inspiration for future research on complex systems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sulaiman RNR; Bakar AA; Ngadi N; Kahar INS; Nordin AH; Ikram M; Nabgan W;

    Microplastic pollution has adversely affected the aquatic ecosystem, living creatures, and human health. Several studies in Malaysia have provided baseline information on the existence of microplastics in surface water, ingestion by marine life and sediment. Also, humans are exposed to microplastic due to consumption of contaminated abiotic and biotic products, such as processed seafood. Nonetheless, knowledge is still scarce among Malaysian on the potential remediation and pollution management of microplastics, which poses a significant challenge to preserve a good environmental status. Green technologies also other alternative to mitigate the contamination of microplastics for sustainable future. Hence, this review aims to provide an overview of microplastic's occurrence, fate, and implications in Malaysia's aquatic environment. Detection of microplastics from the water surface, ingestion by aquatics, and sediment samples are highlighted. Available different treatment processes toward microplastic remediation are also discussed. Additionally, the potential challenges, current perspective for plastic management in Malaysia, as well as green strategies for reducing microplastic contamination are also put forward. The goal of this work is to improve the understanding of the seriousness of microplastic contamination in aquatic environments, thus encouraging key concerns that need to be investigated further.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Recent advances in next generation sequencing (NGS) have greatly increased our understanding of non-coding tandem repeat (TR) DNA. Here we show how TR DNA can be useful for the study of hybrid zones (HZ), as it serves as a marker to identify introgression in areas where two biological entities come in contact. We used Illumina libraries to analyse two subspecies of the grasshopper Chorthippus parallelus, which currently form a HZ in the Pyrenees. We retrieved a total of 152 TR sequences, and used fluorescent in situ hybridization (FISH) to map 77 families in purebred individuals from both subspecies. Our analysis revealed 50 TR families that could serve as markers for analysis of this HZ, using FISH. Differential TR bands were unevenly distributed between chromosomes and subspecies. Some of these TR families yielded FISH bands in only one of the subspecies, suggesting the amplification of these TR families after the geographic separation of the subspecies in the Pleistocene. Our cytological analysis of two TR markers along a transect of the Pyrenean hybrid zone showed asymmetrical introgression of one subspecies into the other, consistent with previous findings using other markers. These results demonstrate the reliability of TR-band markers for hybrid zone studies. European Union (Plan Andaluz de Investigacion, Desarrollo e Innovacion, PAIDI 2020) Programa Operativo Fondo Social Europeo de Andalucia 2014-2020 DOC_01108 Marie Sklodowska-Curie Individual Fellowship (European Union) 875732 Spanish Government PID2019-104952GB-I00/AEI Junta de Andalucia

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Catalán, I.A.; Álvarez Ellacuría, Amaya; Lisani, José Luis; Sánchez, Josep; +8 Authors

    Further investigation is needed to improve the identification and classification of fish in underwater images using artificial intelligence, specifically deep learning. Questions that need to be explored include the importance of using diverse backgrounds, the effect of (not) labeling small fish on precision, the number of images needed for successful classification, and whether they should be randomly selected. To address these questions, a new labeled dataset was created with over 18,400 recorded Mediterranean fish from 20 species from over 1,600 underwater images with different backgrounds. Two state-of-the-art object detectors/classifiers, YOLOv5m and Faster RCNN, were compared for the detection of the ‘fish’ category in different datasets. YOLOv5m performed better and was thus selected for classifying an increasing number of species in six combinations of labeled datasets varying in background types, balanced or unbalanced number of fishes per background, number of labeled fish, and quality of labeling. Results showed that i) it is cost-efficient to work with a reduced labeled set (a few hundred labeled objects per category) if images are carefully selected, ii) the usefulness of the trained model for classifying unseen datasets improves with the use of different backgrounds in the training dataset, and iii) avoiding training with low-quality labels (e.g., small relative size or incomplete silhouettes) yields better classification metrics. These results and dataset will help select and label images in the most effective way to improve the use of deep learning in studying underwater organisms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Castro Ó; Borrull S; Riu J; Gimeno-Monforte S; Montesdeoca-Esponda S; Sosa-Ferrera Z; Santana-Rodríguez JJ; Pocurull E; Borrull F;

    Seafood plays an important role in diet because of its health benefits. However, the fact that chemical compounds such as high production volume chemicals may be present in seafood means that its consumption can be a potential risk for population. To assess the occurrence of HPVs and estimate the exposure and risk associated with their consumption, specimens of the most consumed seafood species in Catalonia and the Canary Islands, Spain, were collected and analysed. Results showed higher levels of HPVs in samples from Catalonia and a prevalence of phthalate esters and benzenesulfonamides over the other target compounds in samples from both locations. Multivariate analysis showed spatial differences between the mean concentration profiles of HPVs for the samples from Catalonia and the Canary Islands. Exposures were higher for the samples from Catalonia, although the intake of HPVs via seafood was not of any real concern in either of the locations.Copyright © 2023. Published by Elsevier Ltd.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jurado-Ruzafa, Alba;

    Regarding the research activities carried out by Oceanographic Centre of the Canary Islands (IEO-CSIC) during intersession, several studies on different topics were presented. Firstly, reproductive traits for the four main species have been analysed including all the data obtained since the monitoring system was launched in 2013. Although with some variations, the spawning season matched with winter and beginning spring for S. colias, T. picturatus and S. pilchardus. However, spawning individuals of S. aurita are present all year round. Sizes at first maturity (SFM) were also estimated, with slightly smaller sizes obtained for S. colias and T. picturatus (around 19 cm of total length) compared with the reference values (20 cm and 23 cm, respectively) (Jurado-Ruzafa and Santamaría, 2013; Lorenzo and Pajuelo, 1996). It seems that SFM remains stable for S. pilchardus (15 cm) (Méndez-Villamil et al., 1997). In the case of S. aurita, size at first maturity has been estimated for the first time in the Canary Islands, and has been recently published (Jurado-Ruzafa et al., 2022). Secondly, a first attempt to describe total catches of the Canary artisanal purse-seine fleet based on scientific observation shows that discards are more relevant than what was supposed, reaching the 25 percent of the total catches. The situation is even more concerning if only S. colias is considered, with discards around 40 percent of the total catches, mainly impacting on juveniles’ fraction, which is usually used as bait by commercial vessels but that are not officially reported. Finally, very preliminary results were shown to the working group about the potential adaptive plasticity in Scomber colias from the Canary Islands, based on otolith shape analyses. These results were obtained from analysing 748 otoliths extracted from August 2016 to December 2017. A DIvisive ANAlysis (DIANA) Clustering method using the fourth wavelet obtained from otolith contours resulted in the detection of five different morphotypes (or otolith phenotypes), with two of them representing 85 percent of the samples analysed, and whose individuals were slightly larger than for the other morphotypes. Further questions should be explored, addressing possible intraspecific variation in the growth rate among phenotypes; phenotypes proportions change in relation to seasonal variations; existence of different ecological strategies related to each phenotype and the presence of these otolith phenotypes in other geographical areas, as it has been described for T. picturatus (Tuset et al., 2019; Vasconcelos et al., 2021). References Jurado-Ruzafa, A. and M.T.G. Santamaría. 2013. Reproductive biology of the blue jack mackerel, Trachurus picturatus (Bowdich, 1825), off the Canary Islands. Journal of Applied Ichthyology, 29(3): 526–531. Jurado-Ruzafa, A., B. Sotillo de Olano, Z. Santana Arocha, B. G. Mañé, C. Estil-las, E. Hernández, S. Jiménez, G. González-Lorenzo and C. Perales-Raya. 2022. Reproductive traits of the round sardinella in the Canary Islands (Spain, NW Africa). Journal of the Marine Biological Association of the UK, (early view) 1-7. Lorenzo, J. M. and J.G. Pajuelo. 1996. Growth and reproductive biology of chub mackerel Scomber japonicus off the Canary Islands. South African Journal of Marine Science, 17(1): 275-280. Méndez-Villamil, M., J.M. Lorenzo, J.M. González and R. Soto. 1997. Periodo reproductor y madurez sexual de la sardina Sardina pilchardus (Walbaum, 1792) en aguas de Gran Canaria (Islas Canarias). Boletín del Instituto Español de Oceanografía, 13(1-2): 47-55. Tuset, V.M., A. Jurado-Ruzafa, J.L. Otero-Ferrer and M.T.G. Santamaría. 2019. Otolith phenotypic variability of the blue jack mackerel, Trachurus picturatus, from the Canary Islands (NE Atlantic): Implications in its population dynamic. Fisheries Research, 218: 48-58. Vasconcelos, J., A. Jurado-Ruzafa, J.L. Otero-Ferrer, A. Lombarte, R. Riera and V.M. Tuset. 2021. Thinking of Fish Population Discrimination: Population Average Phenotype vs. Population Phenotypes. Frontiers in Marine Science, 8(1489). BAses de Datos y Estadística de las pesquerías Artesanales de Canarias: Evaluación, Interacciones ambientales y Modelización de los Stocks Biología de recursos vivos de Canarias Estudio de las Pesquerías de AFRICa 2 PACA-BADE EPAFRIK-2 PACA-BIO

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wischhusen, P; Betancor, M.B.; Sprague, M.; Ortega-García, Aurelio; +3 Authors

    including iodothyronine deiodinases 1, 2 and 3 (dio1, dio2, dio3) was unaffected. Feeding Se enriched rotifers effectively increased Se in ABT larvae tissue. The improved growth observed in Se supplemented treatments might be related to an accelerated development as the flexion index was significantly higher in all Se enriched treatments compared to the non-supplemented control. A similar effect by Se supplementation has been previously described in Senegalese sole (Solea senegalensis) in relation to an enhanced thyroid hormone activity by Se supplementation (Ribeiro et al., 2012). The Se level of 0.10 µg g-1 dw measured in non-supplemented rotifers is below known requirements in fish (Antony Jesu Prabhu et al. 2016). In contrast, rotifers supplemented with the lowest Se level (Se3) contained 4.42 µg Se g-1, which might be sufficient to cover requirements for this mineral as selenoproteins displayed maximum expression in ABT larvae fed this treatment. The increased seleno-enzyme production might have contributed towards an improved antioxidant status in ABT larvae, indicated by a transcriptional downregulation of redox sensitive antioxidant enzymes cat and sod. In conclusion, rotifers without Se enrichment are suboptimal for ABT larvae at first feeding. A dietary Se level of 4.42 µg g-1 dw is recommended as it boosted growth performance and improved the antioxidant status in ABT larvae.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
  • Authors: Santos, Ricardo; Sabatés, Ana; Ramón, Montserrat; Villanueva, Roger; +3 Authors

    The Marine Biological Reference Collections (CBMR) are located at the Institute of Marine Sciences (ICM-CSIC) in Barcelona, Spain. The CBR are a Unit of Service where around 15000 referenced species are preserved, catalogued and maintained for their study. The most represented marine groups at the CBMR are fish, crustaceans, molluscs and echinoderms, but also other groups are present. The studies based on the CBMR specimens are focused on biodiversity, biogeography, taxonomy (type species), invasive and alien species, and genetic analysis. Several PhD theses have also been carried out in collaboration with the CBMR.The CBMR are a reference point for the marine biodiversity of the Mediterranean Sea, but in their facilities the CBMR also hold specimens from all the oceans (Atlantic, Pacific, Indian, Antarctic and Arctic). The Collections are constantly receiving new specimens and updating. The main sources of specimens are oceanographic surveys and different kind of sampling programs carried out by the research projects run by the ICM-CSIC. However, the CBMR have also received (in the past and currently) different collections donated by naturalists, researchers, other institutions, and particulars. The CBMR were created in 1981, in the earlier history of the ICM-CSIC, by Jaume Rucabado, Domingo Lloris and Concepción Allué. The Collections were later recognized and catalogued by the Spanish Ministry of Culture in 1990. In the last decade, the CBMR initiated a new stage where the information was digitized and the physical preservation of specimens updated to the new rules (such as change from formaldehyde to ethanol). The CBMR are now part of GBIF (Global Biodiversity Information Facility), thus making public and available all data collections and their metadata. We have also incorporated the use of Geographical Information Systems (GIS) to monitor and study the geographical distribution of our specimens and moreover, the CBMR started to act as repository of DNA voucher collections for genetic analyses.As a unit of service of the ICM-CSIC we think that education and outreach of marine science is of crucial importance for the society and for that reason the CBMR take active part in several outreach activities with schools, universities and general public. For more information or details you can visit our webpage (http://cbr.icm.csic.es/en/node) and send us an e-mail (cbr@icm.csic.es). We will be happy to help you.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Decades ago, the presence of extra chromosomes restricted to the male germ line in several grasshopper species was interpreted as recurrent polysomy, as experimental crosses suggested that the extra chromoso- mes were not transmitted from adult male parents to their embryo offspring. Under this hypothesis, polysomy was generated de novo through a nondisjunction for some chromosomes of the standard karyotype. In the current study, I test this hypothesis by analysing 17 families of tandem repeats (TRs) in two males of the grasshopper Chorthippus parallelus, which displays mosaicism for this kind of extra chromosome. According to the de novo polysomy hypothesis, the extra chromosomes should show the same FISH pattern for the TRs analysed as at least one of the A chromosomes. However, three TR families displayed patterns of FISH bands on the standard and extra chromosomes that ruled out the former as a possible source for the latter. Therefore, these extra chromosomes are best interpreted as B chromosomes restricted to the germ line, presumably present in both sexes, which are inherited as such and are not recurrently generated de novo from the A chromosomes. Key words: Extra chromosomes, FISH, polysomy, tandem repeats

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: González González, Aridane; Pérez-Almeida, Norma; Arnone, Veronica; González Santana, David; +2 Authors

    Marine microorganisms like microalgae, can produce organic ligands with the capability to complex trace metals in the ocean such as iron (Fe) and copper (Cu). Among all the possible organic compounds, polyphenols have been measured and identified in the exudates of marine microalgae such as Phaeodactylum tricornutum and Dunaliella tertiolecta. Among all these polyphenols, catechin, sinapic acid, gallic acid and gentisic acid have been studied in terms of Fe complexation via kinetics of formation (kf) and dissociation (kd). The kf of these organic ligands was 1.2x104 - 4.2x105 M−1 s−1 and kd was 1.8x10−4 - 4.4x10−4 s−1. Therefore, the conditional stability constant (log K′Fe′L) was from 7.8 to 9.2. Then, these polyphenols can be considered weak ligands (L2-type). These results demonstrated that the microalgae can excrete functional groups to complex Fe in seawater, increasing its solubility and keeping for longer in solution. This work improves our knowledge about the Fe biogeochemical cycle and characterizes the pool of organic matter in terms of interactions with Fe. 35 1

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bianconi G; Arenas A; Biamonte J; Carr LD; Kahng B; Kertesz J; Kurths J; Lü L; Masoller C; Motter AE; Perc M; Radicchi F; Ramaswamy R; Rodrigues FA; Sales-Pardo M; San Miguel M; Thurner S; Yasseri T;

    The 2021 Nobel Prize in Physics recognized the fundamental role of complex systems in the natural sciences. In order to celebrate this milestone, this editorial presents the point of view of the editorial board of JPhys Complexity on the achievements, challenges, and future prospects of the field. To distinguish the voice and the opinion of each editor, this editorial consists of a series of editor perspectives and reflections on few selected themes. A comprehensive and multi-faceted view of the field of complexity science emerges. We hope and trust that this open discussion will be of inspiration for future research on complex systems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sulaiman RNR; Bakar AA; Ngadi N; Kahar INS; Nordin AH; Ikram M; Nabgan W;

    Microplastic pollution has adversely affected the aquatic ecosystem, living creatures, and human health. Several studies in Malaysia have provided baseline information on the existence of microplastics in surface water, ingestion by marine life and sediment. Also, humans are exposed to microplastic due to consumption of contaminated abiotic and biotic products, such as processed seafood. Nonetheless, knowledge is still scarce among Malaysian on the potential remediation and pollution management of microplastics, which poses a significant challenge to preserve a good environmental status. Green technologies also other alternative to mitigate the contamination of microplastics for sustainable future. Hence, this review aims to provide an overview of microplastic's occurrence, fate, and implications in Malaysia's aquatic environment. Detection of microplastics from the water surface, ingestion by aquatics, and sediment samples are highlighted. Available different treatment processes toward microplastic remediation are also discussed. Additionally, the potential challenges, current perspective for plastic management in Malaysia, as well as green strategies for reducing microplastic contamination are also put forward. The goal of this work is to improve the understanding of the seriousness of microplastic contamination in aquatic environments, thus encouraging key concerns that need to be investigated further.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Recent advances in next generation sequencing (NGS) have greatly increased our understanding of non-coding tandem repeat (TR) DNA. Here we show how TR DNA can be useful for the study of hybrid zones (HZ), as it serves as a marker to identify introgression in areas where two biological entities come in contact. We used Illumina libraries to analyse two subspecies of the grasshopper Chorthippus parallelus, which currently form a HZ in the Pyrenees. We retrieved a total of 152 TR sequences, and used fluorescent in situ hybridization (FISH) to map 77 families in purebred individuals from both subspecies. Our analysis revealed 50 TR families that could serve as markers for analysis of this HZ, using FISH. Differential TR bands were unevenly distributed between chromosomes and subspecies. Some of these TR families yielded FISH bands in only one of the subspecies, suggesting the amplification of these TR families after the geographic separation of the subspecies in the Pleistocene. Our cytological analysis of two TR markers along a transect of the Pyrenean hybrid zone showed asymmetrical introgression of one subspecies into the other, consistent with previous findings using other markers. These results demonstrate the reliability of TR-band markers for hybrid zone studies. European Union (Plan Andaluz de Investigacion, Desarrollo e Innovacion, PAIDI 2020) Programa Operativo Fondo Social Europeo de Andalucia 2014-2020 DOC_01108 Marie Sklodowska-Curie Individual Fellowship (European Union) 875732 Spanish Government PID2019-104952GB-I00/AEI Junta de Andalucia

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Catalán, I.A.; Álvarez Ellacuría, Amaya; Lisani, José Luis; Sánchez, Josep; +8 Authors

    Further investigation is needed to improve the identification and classification of fish in underwater images using artificial intelligence, specifically deep learning. Questions that need to be explored include the importance of using diverse backgrounds, the effect of (not) labeling small fish on precision, the number of images needed for successful classification, and whether they should be randomly selected. To address these questions, a new labeled dataset was created with over 18,400 recorded Mediterranean fish from 20 species from over 1,600 underwater images with different backgrounds. Two state-of-the-art object detectors/classifiers, YOLOv5m and Faster RCNN, were compared for the detection of the ‘fish’ category in different datasets. YOLOv5m performed better and was thus selected for classifying an increasing number of species in six combinations of labeled datasets varying in background types, balanced or unbalanced number of fishes per background, number of labeled fish, and quality of labeling. Results showed that i) it is cost-efficient to work with a reduced labeled set (a few hundred labeled objects per category) if images are carefully selected, ii) the usefulness of the trained model for classifying unseen datasets improves with the use of different backgrounds in the training dataset, and iii) avoiding training with low-quality labels (e.g., small relative size or incomplete silhouettes) yields better classification metrics. These results and dataset will help select and label images in the most effective way to improve the use of deep learning in studying underwater organisms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Castro Ó; Borrull S; Riu J; Gimeno-Monforte S; Montesdeoca-Esponda S; Sosa-Ferrera Z; Santana-Rodríguez JJ; Pocurull E; Borrull F;

    Seafood plays an important role in diet because of its health benefits. However, the fact that chemical compounds such as high production volume chemicals may be present in seafood means that its consumption can be a potential risk for population. To assess the occurrence of HPVs and estimate the exposure and risk associated with their consumption, specimens of the most consumed seafood species in Catalonia and the Canary Islands, Spain, were collected and analysed. Results showed higher levels of HPVs in samples from Catalonia and a prevalence of phthalate esters and benzenesulfonamides over the other target compounds in samples from both locations. Multivariate analysis showed spatial differences between the mean concentration profiles of HPVs for the samples from Catalonia and the Canary Islands. Exposures were higher for the samples from Catalonia, although the intake of HPVs via seafood was not of any real concern in either of the locations.Copyright © 2023. Published by Elsevier Ltd.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jurado-Ruzafa, Alba;

    Regarding the research activities carried out by Oceanographic Centre of the Canary Islands (IEO-CSIC) during intersession, several studies on different topics were presented. Firstly, reproductive traits for the four main species have been analysed including all the data obtained since the monitoring system was launched in 2013. Although with some variations, the spawning season matched with winter and beginning spring for S. colias, T. picturatus and S. pilchardus. However, spawning individuals of S. aurita are present all year round. Sizes at first maturity (SFM) were also estimated, with slightly smaller sizes obtained for S. colias and T. picturatus (around 19 cm of total length) compared with the reference values (20 cm and 23 cm, respectively) (Jurado-Ruzafa and Santamaría, 2013; Lorenzo and Pajuelo, 1996). It seems that SFM remains stable for S. pilchardus (15 cm) (Méndez-Villamil et al., 1997). In the case of S. aurita, size at first maturity has been estimated for the first time in the Canary Islands, and has been recently published (Jurado-Ruzafa et al., 2022). Secondly, a first attempt to describe total catches of the Canary artisanal purse-seine fleet based on scientific observation shows that discards are more relevant than what was supposed, reaching the 25 percent of the total catches. The situation is even more concerning if only S. colias is considered, with discards around 40 percent of the total catches, mainly impacting on juveniles’ fraction, which is usually used as bait by commercial vessels but that are not officially reported. Finally, very preliminary results were shown to the working group about the potential adaptive plasticity in Scomber colias from the Canary Islands, based on otolith shape analyses. These results were obtained from analysing 748 otoliths extracted from August 2016 to December 2017. A DIvisive ANAlysis (DIANA) Clustering method using the fourth wavelet obtained from otolith contours resulted in the detection of five different morphotypes (or otolith phenotypes), with two of them representing 85 percent of the samples analysed, and whose individuals were slightly larger than for the other morphotypes. Further questions should be explored, addressing possible intraspecific variation in the growth rate among phenotypes; phenotypes proportions change in relation to seasonal variations; existence of different ecological strategies related to each phenotype and the presence of these otolith phenotypes in other geographical areas, as it has been described for T. picturatus (Tuset et al., 2019; Vasconcelos et al., 2021). References Jurado-Ruzafa, A. and M.T.G. Santamaría. 2013. Reproductive biology of the blue jack mackerel, Trachurus picturatus (Bowdich, 1825), off the Canary Islands. Journal of Applied Ichthyology, 29(3): 526–531. Jurado-Ruzafa, A., B. Sotillo de Olano, Z. Santana Arocha, B. G. Mañé, C. Estil-las, E. Hernández, S. Jiménez, G. González-Lorenzo and C. Perales-Raya. 2022. Reproductive traits of the round sardinella in the Canary Islands (Spain, NW Africa). Journal of the Marine Biological Association of the UK, (early view) 1-7. Lorenzo, J. M. and J.G. Pajuelo. 1996. Growth and reproductive biology of chub mackerel Scomber japonicus off the Canary Islands. South African Journal of Marine Science, 17(1): 275-280. Méndez-Villamil, M., J.M. Lorenzo, J.M. González and R. Soto. 1997. Periodo reproductor y madurez sexual de la sardina Sardina pilchardus (Walbaum, 1792) en aguas de Gran Canaria (Islas Canarias). Boletín del Instituto Español de Oceanografía, 13(1-2): 47-55. Tuset, V.M., A. Jurado-Ruzafa, J.L. Otero-Ferrer and M.T.G. Santamaría. 2019. Otolith phenotypic variability of the blue jack mackerel, Trachurus picturatus, from the Canary Islands (NE Atlantic): Implications in its population dynamic. Fisheries Research, 218: 48-58. Vasconcelos, J., A. Jurado-Ruzafa, J.L. Otero-Ferrer, A. Lombarte, R. Riera and V.M. Tuset. 2021. Thinking of Fish Population Discrimination: Population Average Phenotype vs. Population Phenotypes. Frontiers in Marine Science, 8(1489). BAses de Datos y Estadística de las pesquerías Artesanales de Canarias: Evaluación, Interacciones ambientales y Modelización de los Stocks Biología de recursos vivos de Canarias Estudio de las Pesquerías de AFRICa 2 PACA-BADE EPAFRIK-2 PACA-BIO

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wischhusen, P; Betancor, M.B.; Sprague, M.; Ortega-García, Aurelio; +3 Authors

    including iodothyronine deiodinases 1, 2 and 3 (dio1, dio2, dio3) was unaffected. Feeding Se enriched rotifers effectively increased Se in ABT larvae tissue. The improved growth observed in Se supplemented treatments might be related to an accelerated development as the flexion index was significantly higher in all Se enriched treatments compared to the non-supplemented control. A similar effect by Se supplementation has been previously described in Senegalese sole (Solea senegalensis) in relation to an enhanced thyroid hormone activity by Se supplementation (Ribeiro et al., 2012). The Se level of 0.10 µg g-1 dw measured in non-supplemented rotifers is below known requirements in fish (Antony Jesu Prabhu et al. 2016). In contrast, rotifers supplemented with the lowest Se level (Se3) contained 4.42 µg Se g-1, which might be sufficient to cover requirements for this mineral as selenoproteins displayed maximum expression in ABT larvae fed this treatment. The increased seleno-enzyme production might have contributed towards an improved antioxidant status in ABT larvae, indicated by a transcriptional downregulation of redox sensitive antioxidant enzymes cat and sod. In conclusion, rotifers without Se enrichment are suboptimal for ABT larvae at first feeding. A dietary Se level of 4.42 µg g-1 dw is recommended as it boosted growth performance and improved the antioxidant status in ABT larvae.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.