Advanced search in
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.

  • European Marine Science
  • Other research products
  • English
  • CNR ExploRA
  • European Marine Science

Date (most recent)
arrow_drop_down
  • Authors: Corgnati; L.;

    The applications are designed for High Frequency Radar (HFR) data management according to the European HFR node processing workflow, thus generating aggregated radial and total velocity files in netCDF format according to the European standard data and metadata model for near real time HFR current data. These applications implement the periodic temporal aggregation of the datasets and the related CDI metadata to be distributed via SeaDataCloud. These applications are designed for the centralized run at the EU HFR Node.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2021
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2021
      Data sources: CNR ExploRA
  • Authors: Verbrugge Nathalie; Etienne Hélène; Boone Christine; Mader Julien; +7 Authors

    This Product User Manual describes the INSITU_GLO_UV_NRT_OBSERVATIONS_013_048 product distributed by the Copernicus Marine Service In Situ Thematic Assembly Centre (CMEMS INS-TAC): how it is built, what is the content, what data services are available to access them, and how to use the files. This product concerns four real-time datasets dedicated to near-surface currents measurements coming from two platform categories (Lagrangian surface drifters and High Frequency radars): drifter: near-surface zonal and meridional raw velocities measured by drifting buoys, wind & wind stress components, quality flags and metadada. These surface observations are part of the DBCP's Global Drifter Program (see Table 1) drifter_filt: near-surface zonal and meridional velocities and 3-day filtered (with a Lanczos filter) velocities measured by drifting buoys. All the platforms are gathered together and concatenated in concatenated daily files. radar_total: near-surface zonal and meridional raw velocities measured by High Frequency radars (HFR), standard deviation of near-surface zonal and meridional raw velocities, Geometrical Dilution of Precision (GDOP), quality flags and metadata. These surface observations are part of the European HF radar Network (see Mader et al, 2017 and Corgnati et al., 2018) radar_radial: near-surface zonal and meridional components of raw radial velocities measured by HFRs, magnitude and direction of near-surface zonal and meridional components of raw radial velocities (measured in the radial directions covered by each of the HFR stations), standard deviation of near-surface zonal and meridional components of raw radial velocities, quality flags and metadata. These surface observations are part of the European HF radar Network (see Mader et al, 2017 and Corgnati et al., 2018) Argo: ocean currents derived from the original trajectory data from Argo GDAC (Global Data Assembly Center). Deep current is calculated from floats drift at parking depth, surface current is calculated from float surface drift. The INS-TAC aims at providing a research and operational framework to develop and deliver in situ observations and derived products based on such observations, to address progressively global (GLO) but also regional needs either for monitoring, modelling or downstream service development.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2020
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2020
      Data sources: CNR ExploRA
  • Authors: Penna, Pierluigi; Belardinelli, Andrea; Croci, Camilla Sofia; Domenichetti, Filippo; +1 Authors

    From 2003 to 2013, the Ancona section of CNR-IRBIM (formerly part of CNR-Institute of Marine Science) runned the "Fishery Observing System" (FOS) program aimed at using Italian fishing vessels as Vessels Of Opportunity (VOOs) for the collection of scientifically useful datasets (Falco et al. 2007). Some commercial fishing vessels, targetting small pelagic species in the northern and central Adriatic Sea, were equipped with an integrated system for the collection of information on catches, position of the fishing operation, depth and water temperature during the haul, producing a great amount of data that demonstrated to be helpful both for oceanographic and fishery biology purposes (Carpi et al. 2015; Aydo?du et a. 2016; Sparnocchia et al. 2016; Lucchetti et al. 2018). In 2012, thanks to the participation to some national and international projects (e.g. SSD-Pesca, EU-FP7 JERICO etc.), CNR started the development of a new modular "Fishery & Oceanography Observing System" (FOOS; Patti et al. 2013). New sensors for oceanographic and meteorological data allow nowadays the FOOS to collect more parameters, with higher accuracy and to send them directly to a data center in near real time (Martinelli et al. 2016; Sparnocchia et al. 2017). Furthermore, the FOOS is a multifunction system able to collect various kind of data from the fishing operations and also to send back to the fishermen useful information (e.g. weather and sea forecasts, etc.) through an electronic logbook with an ad hoc software embedded. The new FOOS installed on various kind of fishing vessels targetting different resources, allowed a spatial extension of the monitored areas in the Mediterranean Sea (Patti et al. 2013). CNR-IRBIM implemented the "AdriFOOS" observational system, by installing the FOOS on some commercial fishing boats operating in the Adriatic Sea. Since then the datacenter based in Ancona receives daily data sets of environmental parameters collected along the water column and close to the sea bottom (eg. temperature, salinity, etc.), together with GPS haul tracks, catch amounts per haul, target species sizes and weather information. Some temperature and salinity measurements acquired by the FOOS in the Adriatic Sea from January 2014 to March 2015 were published within the JERICO project and some oxygen and fluorescence profiles obtained in 2017 within the NEXOS project. The dataset here presented contains 14803 depth/temperature profiles collected by 10 vessels of the AdriFOOS fleet in the period 2012-2020. All the profiles were subjected to quality control.Data are flagged according the L20 (SEADATANET MEASURAND QUALIFIER FLAGS).

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2020
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2020
      Data sources: CNR ExploRA
  • Authors: Carval Thierry; Chalkiopoulos Antonis; Perivoliotis Leonidas; De Alfonso Alonso-Muñoyerro Marta; +9 Authors

    This document specifies the NetCDF file format of Copernicus Marine in situ used to distribute ocean in situ data and metadata. It documents the standards used herein; this includes naming conventions as well as metadata content. It was initiated in March 2019, based on OceanSITES and Argo user's manuals.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2020
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2020
      Data sources: CNR ExploRA
  • Authors: Mangiacrapa F.; Perciante C.;

    The gCube Data Catalogue is a software component that provides facilities for: a) (meta)data publishing; b) vres' products publishing; c) making data products publicly available; d) enriching products of metadata to maximise their potential reuse and making them searchable (via title, tags etc) are based on the CKAN technology. The gcube-ckan-datacatalog Web Application allows to (a) show all the metadata available in the CKAN instance, as well as publish a new product, retrieve the list of organizations (i.e. Virtual Research Environments) to which the user belongs and his/her already published products.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Matteo Malosio; Alessio Prini;

    Software di controllo per il dispositivo antigravitario GlorehaAG

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Alessandro Oggioni;

    RDF FOAF Manufacturer list

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Ribotti, Alberto; Magni, Paolo; Vetrano, Anna; Chiappini, Catia; +1 Authors

    At every station, pressure (P), salinity (S), potential temperature (?) dissolved oxygen concentration (DO) and Fluorescence have been acquired and are part of the database

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Mangiacrapa F.;

    The gCube Workspace environment represents a collaborative area in which users can save, exchange, share, create public links and organize information objects (files) according to their specific needs. Because of this, every user of any Virtual Research Environment in the D4Science Infrastructure is provided with this area.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Cantoni C.; Hopwood M.; Clarke J.; Chiggiato J.; +2 Authors

    A detailed survey of a high Arctic fjord (Kongsfjorden, Svalbard), subjected to a large glacier discharge, was carried out from 24 July to 13 August 2016. Field activities addressed the identification of the effects of glacier and iceberg melting on the evolution of nutrient, dissolved organic matter and carbonate systems in this coastal marine environment. Hydrological (CTD downcasts) and biogeochemical (bottle sampling) data were collected during six oceanographic surveys in the inner area of the fjord, in concomitance to the annual phase of maximum air warming. An extensive sampling was also carried out in all glacier drainage systems located around the fjord and from several iceberg samples, in order to characterize all freshwater loads. The dataset includes hydrological data (T, Sal., density) carbonate chemistry data (pH, DIC, TA) and the concentrations of dissolved oxygen (DO), inorganic nutrients (NO3-, NO2-, NH4+, PO43-, SiO2), dissolved organic matter (DOC, DON) and some micronutrients (Fe, Mn).

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
Advanced search in
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
  • Authors: Corgnati; L.;

    The applications are designed for High Frequency Radar (HFR) data management according to the European HFR node processing workflow, thus generating aggregated radial and total velocity files in netCDF format according to the European standard data and metadata model for near real time HFR current data. These applications implement the periodic temporal aggregation of the datasets and the related CDI metadata to be distributed via SeaDataCloud. These applications are designed for the centralized run at the EU HFR Node.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2021
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2021
      Data sources: CNR ExploRA
  • Authors: Verbrugge Nathalie; Etienne Hélène; Boone Christine; Mader Julien; +7 Authors

    This Product User Manual describes the INSITU_GLO_UV_NRT_OBSERVATIONS_013_048 product distributed by the Copernicus Marine Service In Situ Thematic Assembly Centre (CMEMS INS-TAC): how it is built, what is the content, what data services are available to access them, and how to use the files. This product concerns four real-time datasets dedicated to near-surface currents measurements coming from two platform categories (Lagrangian surface drifters and High Frequency radars): drifter: near-surface zonal and meridional raw velocities measured by drifting buoys, wind & wind stress components, quality flags and metadada. These surface observations are part of the DBCP's Global Drifter Program (see Table 1) drifter_filt: near-surface zonal and meridional velocities and 3-day filtered (with a Lanczos filter) velocities measured by drifting buoys. All the platforms are gathered together and concatenated in concatenated daily files. radar_total: near-surface zonal and meridional raw velocities measured by High Frequency radars (HFR), standard deviation of near-surface zonal and meridional raw velocities, Geometrical Dilution of Precision (GDOP), quality flags and metadata. These surface observations are part of the European HF radar Network (see Mader et al, 2017 and Corgnati et al., 2018) radar_radial: near-surface zonal and meridional components of raw radial velocities measured by HFRs, magnitude and direction of near-surface zonal and meridional components of raw radial velocities (measured in the radial directions covered by each of the HFR stations), standard deviation of near-surface zonal and meridional components of raw radial velocities, quality flags and metadata. These surface observations are part of the European HF radar Network (see Mader et al, 2017 and Corgnati et al., 2018) Argo: ocean currents derived from the original trajectory data from Argo GDAC (Global Data Assembly Center). Deep current is calculated from floats drift at parking depth, surface current is calculated from float surface drift. The INS-TAC aims at providing a research and operational framework to develop and deliver in situ observations and derived products based on such observations, to address progressively global (GLO) but also regional needs either for monitoring, modelling or downstream service development.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2020
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2020
      Data sources: CNR ExploRA
  • Authors: Penna, Pierluigi; Belardinelli, Andrea; Croci, Camilla Sofia; Domenichetti, Filippo; +1 Authors

    From 2003 to 2013, the Ancona section of CNR-IRBIM (formerly part of CNR-Institute of Marine Science) runned the "Fishery Observing System" (FOS) program aimed at using Italian fishing vessels as Vessels Of Opportunity (VOOs) for the collection of scientifically useful datasets (Falco et al. 2007). Some commercial fishing vessels, targetting small pelagic species in the northern and central Adriatic Sea, were equipped with an integrated system for the collection of information on catches, position of the fishing operation, depth and water temperature during the haul, producing a great amount of data that demonstrated to be helpful both for oceanographic and fishery biology purposes (Carpi et al. 2015; Aydo?du et a. 2016; Sparnocchia et al. 2016; Lucchetti et al. 2018). In 2012, thanks to the participation to some national and international projects (e.g. SSD-Pesca, EU-FP7 JERICO etc.), CNR started the development of a new modular "Fishery & Oceanography Observing System" (FOOS; Patti et al. 2013). New sensors for oceanographic and meteorological data allow nowadays the FOOS to collect more parameters, with higher accuracy and to send them directly to a data center in near real time (Martinelli et al. 2016; Sparnocchia et al. 2017). Furthermore, the FOOS is a multifunction system able to collect various kind of data from the fishing operations and also to send back to the fishermen useful information (e.g. weather and sea forecasts, etc.) through an electronic logbook with an ad hoc software embedded. The new FOOS installed on various kind of fishing vessels targetting different resources, allowed a spatial extension of the monitored areas in the Mediterranean Sea (Patti et al. 2013). CNR-IRBIM implemented the "AdriFOOS" observational system, by installing the FOOS on some commercial fishing boats operating in the Adriatic Sea. Since then the datacenter based in Ancona receives daily data sets of environmental parameters collected along the water column and close to the sea bottom (eg. temperature, salinity, etc.), together with GPS haul tracks, catch amounts per haul, target species sizes and weather information. Some temperature and salinity measurements acquired by the FOOS in the Adriatic Sea from January 2014 to March 2015 were published within the JERICO project and some oxygen and fluorescence profiles obtained in 2017 within the NEXOS project. The dataset here presented contains 14803 depth/temperature profiles collected by 10 vessels of the AdriFOOS fleet in the period 2012-2020. All the profiles were subjected to quality control.Data are flagged according the L20 (SEADATANET MEASURAND QUALIFIER FLAGS).

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2020
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2020
      Data sources: CNR ExploRA
  • Authors: Carval Thierry; Chalkiopoulos Antonis; Perivoliotis Leonidas; De Alfonso Alonso-Muñoyerro Marta; +9 Authors

    This document specifies the NetCDF file format of Copernicus Marine in situ used to distribute ocean in situ data and metadata. It documents the standards used herein; this includes naming conventions as well as metadata content. It was initiated in March 2019, based on OceanSITES and Argo user's manuals.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2020
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2020
      Data sources: CNR ExploRA
  • Authors: Mangiacrapa F.; Perciante C.;

    The gCube Data Catalogue is a software component that provides facilities for: a) (meta)data publishing; b) vres' products publishing; c) making data products publicly available; d) enriching products of metadata to maximise their potential reuse and making them searchable (via title, tags etc) are based on the CKAN technology. The gcube-ckan-datacatalog Web Application allows to (a) show all the metadata available in the CKAN instance, as well as publish a new product, retrieve the list of organizations (i.e. Virtual Research Environments) to which the user belongs and his/her already published products.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Matteo Malosio; Alessio Prini;

    Software di controllo per il dispositivo antigravitario GlorehaAG

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Alessandro Oggioni;

    RDF FOAF Manufacturer list

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Ribotti, Alberto; Magni, Paolo; Vetrano, Anna; Chiappini, Catia; +1 Authors

    At every station, pressure (P), salinity (S), potential temperature (?) dissolved oxygen concentration (DO) and Fluorescence have been acquired and are part of the database

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Mangiacrapa F.;

    The gCube Workspace environment represents a collaborative area in which users can save, exchange, share, create public links and organize information objects (files) according to their specific needs. Because of this, every user of any Virtual Research Environment in the D4Science Infrastructure is provided with this area.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA
  • Authors: Cantoni C.; Hopwood M.; Clarke J.; Chiggiato J.; +2 Authors

    A detailed survey of a high Arctic fjord (Kongsfjorden, Svalbard), subjected to a large glacier discharge, was carried out from 24 July to 13 August 2016. Field activities addressed the identification of the effects of glacier and iceberg melting on the evolution of nutrient, dissolved organic matter and carbonate systems in this coastal marine environment. Hydrological (CTD downcasts) and biogeochemical (bottle sampling) data were collected during six oceanographic surveys in the inner area of the fjord, in concomitance to the annual phase of maximum air warming. An extensive sampling was also carried out in all glacier drainage systems located around the fjord and from several iceberg samples, in order to characterize all freshwater loads. The dataset includes hydrological data (T, Sal., density) carbonate chemistry data (pH, DIC, TA) and the concentrations of dissolved oxygen (DO), inorganic nutrients (NO3-, NO2-, NH4+, PO43-, SiO2), dissolved organic matter (DOC, DON) and some micronutrients (Fe, Mn).

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Other ORP type . 2019
    Data sources: CNR ExploRA
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Other ORP type . 2019
      Data sources: CNR ExploRA