Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
987 Research products, page 1 of 99

  • European Marine Science
  • Other research products
  • 2018-2022
  • English

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Cunha, M.; Coscueta, E. R.; Brassesco, M. E.; Almada, F.; Gonçalves, D.; Pintado, M. Manuela;
    Publisher: Sociedade Portuguesa de Química
    Country: Portugal

    The mucus covers the fish's body, working as a protective barrier. Besides physical protection, mucus provides molecules that protect the fish from pathogens damaging 1,2. These include antimicrobial peptides secreted in the mucus, which play an essential role in defense against microbial pathogens since these belong to the innate immune system2,3. In this study, two adult Halobatrachus didactylus individuals were captured from the wild in Sesimbra. Then, mucus collection was performed by scraping the dorsal-lateral body of the fish with a sponge. Our objective was the identification of new peptides with bioactive potential in mucus samples by chromatography analysis. Size exclusion highperformance liquid chromatography (SE-HPLC) analysis performed on mucus samples from the two individuals revealed a similar profile with an intense highlight peak which resulted in a distribution of about 775 Dalton. With interest in that peak, the two mucus samples were pooled for fractionation by SEC. The resulting fraction was analyzed by liquid chromatography-tandem mass spectrometry (LCMS/MS) to identify the most probable peptide sequences. Identification from databases did not provide reliable results, indicating a lack of information on the matrix analyzed. We resorted to de novo sequencing with good results using PEAKS Studio software. Five identified peptides were selected according to their bioactivities predicted in silico. Furthermore, the five identified peptides were synthesized, and the molecular size was validated by SE-HPLC analysis. Overall, this chromatographic approach enabled the identification of promising peptides, which bioactivities will be evaluated in vitro in future work.

  • Open Access English
    Authors: 
    Waelbroeck, Claire; Tjiputra, Jerry; Guo, Chuncheng; Nisancioglu, Kerim H.; Jansen, Eystein; Vazquez Riveiros, Natalia; Toucanne, Samuel; Eynaud, Frédérique; Rossignol, Linda; Dewilde, Fabien; +3 more
    Project: EC | ACCLIMATE (339108), EC | ICE2ICE (610055)

    We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry, in order to interpret the observed Cibicides δ13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides δ13C observed at the end of HS4 between ~2000 and 4200 m in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high latitude glacial North Atlantic. Our model results show that this Cibicides δ13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from ~40 % at 2000 m to ~80 % at 4000 m. Below ~4200 m, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials than interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.

  • Open Access English
    Authors: 
    Dagmara Rusiecka;
    Publisher: Zenodo

    Triple threat processes and/or other forcings can lead to changes in the ocean happening fast and abruptly. These changes, referred to as “tipping points”, are critical thresholds in a marine system that, when exceeded, can lead to a significant change in the state of the system, which often can be irreversible. This leaflet has been prepared mainly (but not only) for high school pupils with the financial support of Norges forskningsråd (Research Council of Norway) (309382).

  • Open Access English
    Authors: 
    Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Archer-Nicholls, Scott; Dorling, Steve; Reeves, Claire E.; Butler, Tim;
    Project: EC | ASIBIA (616938)

    Tropospheric ozone (O3) concentrations depend on a combination of hemispheric, regional, and local-scale processes. Estimates of how much O3 is produced locally vs. transported from further afield are essential in air quality management and regulatory policies. Here, a tagged-ozone mechanism within the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to quantify the contributions to surface O3 in the UK from anthropogenic nitrogen oxide (NOx) emissions from inside and outside the UK during May–August 2015. The contribution of the different source regions to three regulatory O3 metrics is also examined. It is shown that model simulations predict the concentration and spatial distribution of surface O3 with a domain-wide mean bias of −3.7 ppbv. Anthropogenic NOx emissions from the UK and Europe account for 13 % and 16 %, respectively, of the monthly mean surface O3 in the UK, as the majority (71 %) of O3 originates from the hemispheric background. Hemispheric O3 contributes the most to concentrations in the north and the west of the UK with peaks in May, whereas European and UK contributions are most significant in the east, south-east, and London, i.e. the UK's most populated areas, intensifying towards June and July. Moreover, O3 from European sources is generally transported to the UK rather than produced in situ. It is demonstrated that more stringent emission controls over continental Europe, particularly in western Europe, would be necessary to improve the health-related metric MDA8 O3 above 50 and 60 ppbv. Emission controls over larger areas, such as the Northern Hemisphere, are instead required to lessen the impacts on ecosystems as quantified by the AOT40 metric.

  • Open Access English
    Authors: 
    Allen, Rita Salomé Fonseca;
    Country: Portugal

    A cidade é um produto complexo que combina recursos físicos e aspetos culturais, históricos, sociais e económicos que influenciam na formação da sua identidade. Dessa forma, a identidade de uma cidade é o seu ADN: uma combinação distinta e herdada de bens, história, características e cultura que a define interna e externamente e tem o poder de unificar pessoas e lugares. Como a identidade é a base sobre a qual a imagem de uma cidade é criada, é de grande importância considerar como as cidades constroem e desenvolvem a sua identidade. A cidade de Matosinhos apresenta-se como objeto de estudo, destacando as características únicas da cidade que definem a sua identidade cultural. A ligação profunda ao mar continua a ser a característica mais importante que define a identidade de Matosinhos. É possível notar esta relação em vários aspetos, uma vez que Matosinhos tem uma das melhores infraestruturas portuárias do país (o porto de Leixões), uma gastronomia rica em sabores do mar (um polo de atração turística), um rico património com monumentos e esculturas dedicadas ao mar, bem como importantes tradições e celebrações que contribuem para preservar o espírito da sua comunidade. Esta relação é também evidente nas inúmeras atividades económicas que dependem do mar, bem como nas horas de lazer desfrutadas pelos locais e turistas que visitam as praias e o mar para tirar proveito desta caraterística especial de Matosinhos. Da mesma forma que o mar contribui para definir a identidade de Matosinhos, revela também como Matosinhos afirma a sua posição para o desenvolvimento de uma economia azul sustentável. The city is a complex product that combines physical resources as well as cultural, historical, social, and economic aspects that influence the formation of its identity. In this way, the identity of a city is its DNA: a distinct, inherited combination of assets, history, characteristics, and culture that defines it internally and externally and has the power to unify people and place. Because identity is the foundation upon which a city's image is created, it is vital to consider how cities build and develop their identity. The city of Matosinhos will be the object of study, highlighting the city's unique characteristics that define its cultural identity. The deep connection to the sea remains the most important feature that characterises Matosinhos' identity. It is possible to note this relationship in several aspects since Matosinhos has one of the best port infrastructures in the country (the port of Leixões), a gastronomy rich in sea flavours (a pole of tourist attraction), a rich heritage with many monuments and sculptures dedicated to the sea, as well as important traditions and celebrations that contribute to preserving the spirit of its community. This relationship is also evident in the numerous economic activities that rely on the sea, as well as the hours of relaxation enjoyed by locals and tourists who visit the beaches and the sea to take advantage of this Matosinhos special feature. In the same way that the sea contributes to define the identity of Matosinhos, it also reveals how Matosinhos affirms its position for the development of a sustainable blue economy.

  • Open Access English
    Authors: 
    Galgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; +2 more
    Publisher: Zenodo
    Project: EC | POSEIDOMM (702747)

    Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;
    Project: EC | ICE2ICE (610055)

    Greenland ice cores provide information about past climate. Few impurity records covering the past 2 decades exist from Greenland. Here we present results from six firn cores obtained during a 426 km long northern Greenland traverse made in 2015 between the NEEM and the EGRIP deep-drilling stations situated on the western side and eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analyzed for chemical impurities and cover time spans of 18 to 53 years (±3 years) depending on local snow accumulation that decreases from west to east. The high temporal resolution allows for annual layers and seasons to be resolved. Insoluble dust, ammonium, and calcium concentrations in the six firn cores overlap, and the seasonal cycles are also similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations, H2O2 driven by the accumulation pattern, and conductivity likely influenced by sea salt. Overall, we determine a rather constant dust flux over the period, but in the data from recent years (1998–2015) we identify an increase in large dust particles that we ascribe to an activation of local Greenland sources. We observe an expected increase in acidity and conductivity in the mid-1970s as a result of anthropogenic emissions, followed by a decrease due to mitigation. Several volcanic horizons identified in the conductivity and acidity records can be associated with eruptions in Iceland and in the Barents Sea region. From a composite ammonium record we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R=0.49).

  • Open Access English
    Authors: 
    Droste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; +2 more
    Project: EC | CARBOCHANGE (264879)

    Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekström Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air–sea CO2 flux that can range between a strong sink (−24 mmol m−2 d−1) and a small source (3 mmol m−2 d−1) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.

  • Open Access English
    Authors: 
    Dearnley, Jamie;
    Country: Canada

    Knowledge gaps pertaining to the remediation of freshwater lakes impacted by oil spills have persisted despite recent record highs for oil production and transportation across vulnerable regions in North America. The multiyear Freshwater Oil Spill Remediation Study (FOReSt), conducted at the IISD-Experimental Lakes Area in Canada, is focusing on the efficacy of minimally invasive methods for remediating oil spills in freshwater boreal lakes. In this thesis, the impacts and remediation of diluted bitumen (dilbit) and conventional heavy crude oil (CHV) spills were investigated (year 1), as were a variety of different remediation methods for spills of dilbit on different shoreline substrates (year 2). Two common small-bodied fish, fathead minnows (Promephales promelas) and finescale dace (Chrosomus neogaeus), were used to assess exposure to petrogenic polycyclic aromatic compounds (PACs) in model enclosed shoreline ecosystems impacted by spills and remediated using minimally invasive techniques. Short-term exposure to PACs, the most toxicologically relevant compounds in oil, was assessed in fish using biliary metabolite concentrations. In year one, finescale dace and fathead minnows residing in oil treated enclosures each had biliary pyrene metabolite concentrations that were positively correlated with pyrene concentrations in the water of the enclosures. Three months after the initial spills, fish in the enclosure receiving dilbit were significantly more exposed to PACs than fish in reference enclosures that did not receive oil. In year two, both finescale dace and fathead minnows residing in oil-treated exposures, regardless of shoreline substrate, showed increased exposure to PACs compared to fish in reference enclosures and the pristine lake environment two and a half months after the spills. No significant differences in exposure were observed among the remediation treatments. Biliary PAC metabolite concentrations were positively predicted by parent PAC concentrations in periphyton. PACs in periphyton two and a half months after oil introduction were positively correlated with PACs in the enclosures one week after spills, suggesting fish also had increased exposure to periphyton-bound alkyl-PACs. This thesis validates the use of small-bodied fish in assessing PAC exposure following freshwater oil spills and demonstrates the difficulties in estimating exposure using environmental concentrations in natural systems.

  • Open Access English
    Authors: 
    Kajanto, Karita; Straneo, Fiammetta; Nisancioglu, Kerim;
    Project: EC | ICE2ICE (610055)

    The role of icebergs in narrow fjords hosting marine terminating glaciers in Greenland is poorly understood, even though icebergs provide a substantial freshwater flux that can exceed the subglacial discharge. Iceberg melt is distributed at depth, contributing to fjord stratification, thus impacting melt and dynamics of the glacier front. We model the high-silled Ilulissat Icefjord in Western Greenland with the MITgcm ocean model, using the IceBerg package to study the effect of icebergs on fjord properties, and compare our results with available observations from 2014. We find the subglacial discharge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Icebergs are necessary to include to correctly understand the properties of Ilulissat Icefjord, since they modify the fjord in three main ways: First, icebergs cool and freshen the water column within their vertical extent; Second, icebergs depress the neutral buoyancy depth of the plume and the outflow route of glacially modified water; Third, icebergs modify the deep basin, below their vertical extent, due to both increased entrainment of glacially modified water into the fjord, and iceberg modification of the incoming ambient water. Furthermore, the depressed neutral buoyancy depth of the plume limits melt to the deep section of the front of Sermeq Kujalleq (Jakobshavn Isbræ) even during peak summer, and thus promotes undercutting. We postulate that the impact of icebergs on the neutral buoyancy depth of the plume is a key mechanism connecting iceberg melange and glacier calving, independent of mechanical support.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
987 Research products, page 1 of 99
  • Open Access English
    Authors: 
    Cunha, M.; Coscueta, E. R.; Brassesco, M. E.; Almada, F.; Gonçalves, D.; Pintado, M. Manuela;
    Publisher: Sociedade Portuguesa de Química
    Country: Portugal

    The mucus covers the fish's body, working as a protective barrier. Besides physical protection, mucus provides molecules that protect the fish from pathogens damaging 1,2. These include antimicrobial peptides secreted in the mucus, which play an essential role in defense against microbial pathogens since these belong to the innate immune system2,3. In this study, two adult Halobatrachus didactylus individuals were captured from the wild in Sesimbra. Then, mucus collection was performed by scraping the dorsal-lateral body of the fish with a sponge. Our objective was the identification of new peptides with bioactive potential in mucus samples by chromatography analysis. Size exclusion highperformance liquid chromatography (SE-HPLC) analysis performed on mucus samples from the two individuals revealed a similar profile with an intense highlight peak which resulted in a distribution of about 775 Dalton. With interest in that peak, the two mucus samples were pooled for fractionation by SEC. The resulting fraction was analyzed by liquid chromatography-tandem mass spectrometry (LCMS/MS) to identify the most probable peptide sequences. Identification from databases did not provide reliable results, indicating a lack of information on the matrix analyzed. We resorted to de novo sequencing with good results using PEAKS Studio software. Five identified peptides were selected according to their bioactivities predicted in silico. Furthermore, the five identified peptides were synthesized, and the molecular size was validated by SE-HPLC analysis. Overall, this chromatographic approach enabled the identification of promising peptides, which bioactivities will be evaluated in vitro in future work.

  • Open Access English
    Authors: 
    Waelbroeck, Claire; Tjiputra, Jerry; Guo, Chuncheng; Nisancioglu, Kerim H.; Jansen, Eystein; Vazquez Riveiros, Natalia; Toucanne, Samuel; Eynaud, Frédérique; Rossignol, Linda; Dewilde, Fabien; +3 more
    Project: EC | ACCLIMATE (339108), EC | ICE2ICE (610055)

    We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry, in order to interpret the observed Cibicides δ13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides δ13C observed at the end of HS4 between ~2000 and 4200 m in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high latitude glacial North Atlantic. Our model results show that this Cibicides δ13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from ~40 % at 2000 m to ~80 % at 4000 m. Below ~4200 m, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials than interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.

  • Open Access English
    Authors: 
    Dagmara Rusiecka;
    Publisher: Zenodo

    Triple threat processes and/or other forcings can lead to changes in the ocean happening fast and abruptly. These changes, referred to as “tipping points”, are critical thresholds in a marine system that, when exceeded, can lead to a significant change in the state of the system, which often can be irreversible. This leaflet has been prepared mainly (but not only) for high school pupils with the financial support of Norges forskningsråd (Research Council of Norway) (309382).

  • Open Access English
    Authors: 
    Romero-Alvarez, Johana; Lupaşcu, Aurelia; Lowe, Douglas; Badia, Alba; Archer-Nicholls, Scott; Dorling, Steve; Reeves, Claire E.; Butler, Tim;
    Project: EC | ASIBIA (616938)

    Tropospheric ozone (O3) concentrations depend on a combination of hemispheric, regional, and local-scale processes. Estimates of how much O3 is produced locally vs. transported from further afield are essential in air quality management and regulatory policies. Here, a tagged-ozone mechanism within the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to quantify the contributions to surface O3 in the UK from anthropogenic nitrogen oxide (NOx) emissions from inside and outside the UK during May–August 2015. The contribution of the different source regions to three regulatory O3 metrics is also examined. It is shown that model simulations predict the concentration and spatial distribution of surface O3 with a domain-wide mean bias of −3.7 ppbv. Anthropogenic NOx emissions from the UK and Europe account for 13 % and 16 %, respectively, of the monthly mean surface O3 in the UK, as the majority (71 %) of O3 originates from the hemispheric background. Hemispheric O3 contributes the most to concentrations in the north and the west of the UK with peaks in May, whereas European and UK contributions are most significant in the east, south-east, and London, i.e. the UK's most populated areas, intensifying towards June and July. Moreover, O3 from European sources is generally transported to the UK rather than produced in situ. It is demonstrated that more stringent emission controls over continental Europe, particularly in western Europe, would be necessary to improve the health-related metric MDA8 O3 above 50 and 60 ppbv. Emission controls over larger areas, such as the Northern Hemisphere, are instead required to lessen the impacts on ecosystems as quantified by the AOT40 metric.

  • Open Access English
    Authors: 
    Allen, Rita Salomé Fonseca;
    Country: Portugal

    A cidade é um produto complexo que combina recursos físicos e aspetos culturais, históricos, sociais e económicos que influenciam na formação da sua identidade. Dessa forma, a identidade de uma cidade é o seu ADN: uma combinação distinta e herdada de bens, história, características e cultura que a define interna e externamente e tem o poder de unificar pessoas e lugares. Como a identidade é a base sobre a qual a imagem de uma cidade é criada, é de grande importância considerar como as cidades constroem e desenvolvem a sua identidade. A cidade de Matosinhos apresenta-se como objeto de estudo, destacando as características únicas da cidade que definem a sua identidade cultural. A ligação profunda ao mar continua a ser a característica mais importante que define a identidade de Matosinhos. É possível notar esta relação em vários aspetos, uma vez que Matosinhos tem uma das melhores infraestruturas portuárias do país (o porto de Leixões), uma gastronomia rica em sabores do mar (um polo de atração turística), um rico património com monumentos e esculturas dedicadas ao mar, bem como importantes tradições e celebrações que contribuem para preservar o espírito da sua comunidade. Esta relação é também evidente nas inúmeras atividades económicas que dependem do mar, bem como nas horas de lazer desfrutadas pelos locais e turistas que visitam as praias e o mar para tirar proveito desta caraterística especial de Matosinhos. Da mesma forma que o mar contribui para definir a identidade de Matosinhos, revela também como Matosinhos afirma a sua posição para o desenvolvimento de uma economia azul sustentável. The city is a complex product that combines physical resources as well as cultural, historical, social, and economic aspects that influence the formation of its identity. In this way, the identity of a city is its DNA: a distinct, inherited combination of assets, history, characteristics, and culture that defines it internally and externally and has the power to unify people and place. Because identity is the foundation upon which a city's image is created, it is vital to consider how cities build and develop their identity. The city of Matosinhos will be the object of study, highlighting the city's unique characteristics that define its cultural identity. The deep connection to the sea remains the most important feature that characterises Matosinhos' identity. It is possible to note this relationship in several aspects since Matosinhos has one of the best port infrastructures in the country (the port of Leixões), a gastronomy rich in sea flavours (a pole of tourist attraction), a rich heritage with many monuments and sculptures dedicated to the sea, as well as important traditions and celebrations that contribute to preserving the spirit of its community. This relationship is also evident in the numerous economic activities that rely on the sea, as well as the hours of relaxation enjoyed by locals and tourists who visit the beaches and the sea to take advantage of this Matosinhos special feature. In the same way that the sea contributes to define the identity of Matosinhos, it also reveals how Matosinhos affirms its position for the development of a sustainable blue economy.

  • Open Access English
    Authors: 
    Galgani, Luisa; Tzempelikou, Eleni; Kalantzi, Ioanna; Tsiola, Anastasia; Tsapakis, Manolis; Paraskevi, Pitta; Esposito, Chiara; Tsotskou, Anastasia; Magiopoulos, Iordanis; Benavides, Roberto; +2 more
    Publisher: Zenodo
    Project: EC | POSEIDOMM (702747)

    Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications at the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used large scale mesocosms (filled with 3 m3 of seawater) to simulate future ocean scenarios. We explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of particulate carbohydrates and proteins in the sea-surface microlayer. Importantly, this resulted in a 3% reduction in the concentration of dissolved CO2 in the underlying water. This reduction suggests direct and indirect impacts of microplastic pollution on the marine uptake of CO2, by modifying the biogenic composition of the sea’s boundary layer with the atmosphere.

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;
    Project: EC | ICE2ICE (610055)

    Greenland ice cores provide information about past climate. Few impurity records covering the past 2 decades exist from Greenland. Here we present results from six firn cores obtained during a 426 km long northern Greenland traverse made in 2015 between the NEEM and the EGRIP deep-drilling stations situated on the western side and eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analyzed for chemical impurities and cover time spans of 18 to 53 years (±3 years) depending on local snow accumulation that decreases from west to east. The high temporal resolution allows for annual layers and seasons to be resolved. Insoluble dust, ammonium, and calcium concentrations in the six firn cores overlap, and the seasonal cycles are also similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations, H2O2 driven by the accumulation pattern, and conductivity likely influenced by sea salt. Overall, we determine a rather constant dust flux over the period, but in the data from recent years (1998–2015) we identify an increase in large dust particles that we ascribe to an activation of local Greenland sources. We observe an expected increase in acidity and conductivity in the mid-1970s as a result of anthropogenic emissions, followed by a decrease due to mitigation. Several volcanic horizons identified in the conductivity and acidity records can be associated with eruptions in Iceland and in the Barents Sea region. From a composite ammonium record we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R=0.49).

  • Open Access English
    Authors: 
    Droste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; +2 more
    Project: EC | CARBOCHANGE (264879)

    Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekström Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air–sea CO2 flux that can range between a strong sink (−24 mmol m−2 d−1) and a small source (3 mmol m−2 d−1) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.

  • Open Access English
    Authors: 
    Dearnley, Jamie;
    Country: Canada

    Knowledge gaps pertaining to the remediation of freshwater lakes impacted by oil spills have persisted despite recent record highs for oil production and transportation across vulnerable regions in North America. The multiyear Freshwater Oil Spill Remediation Study (FOReSt), conducted at the IISD-Experimental Lakes Area in Canada, is focusing on the efficacy of minimally invasive methods for remediating oil spills in freshwater boreal lakes. In this thesis, the impacts and remediation of diluted bitumen (dilbit) and conventional heavy crude oil (CHV) spills were investigated (year 1), as were a variety of different remediation methods for spills of dilbit on different shoreline substrates (year 2). Two common small-bodied fish, fathead minnows (Promephales promelas) and finescale dace (Chrosomus neogaeus), were used to assess exposure to petrogenic polycyclic aromatic compounds (PACs) in model enclosed shoreline ecosystems impacted by spills and remediated using minimally invasive techniques. Short-term exposure to PACs, the most toxicologically relevant compounds in oil, was assessed in fish using biliary metabolite concentrations. In year one, finescale dace and fathead minnows residing in oil treated enclosures each had biliary pyrene metabolite concentrations that were positively correlated with pyrene concentrations in the water of the enclosures. Three months after the initial spills, fish in the enclosure receiving dilbit were significantly more exposed to PACs than fish in reference enclosures that did not receive oil. In year two, both finescale dace and fathead minnows residing in oil-treated exposures, regardless of shoreline substrate, showed increased exposure to PACs compared to fish in reference enclosures and the pristine lake environment two and a half months after the spills. No significant differences in exposure were observed among the remediation treatments. Biliary PAC metabolite concentrations were positively predicted by parent PAC concentrations in periphyton. PACs in periphyton two and a half months after oil introduction were positively correlated with PACs in the enclosures one week after spills, suggesting fish also had increased exposure to periphyton-bound alkyl-PACs. This thesis validates the use of small-bodied fish in assessing PAC exposure following freshwater oil spills and demonstrates the difficulties in estimating exposure using environmental concentrations in natural systems.

  • Open Access English
    Authors: 
    Kajanto, Karita; Straneo, Fiammetta; Nisancioglu, Kerim;
    Project: EC | ICE2ICE (610055)

    The role of icebergs in narrow fjords hosting marine terminating glaciers in Greenland is poorly understood, even though icebergs provide a substantial freshwater flux that can exceed the subglacial discharge. Iceberg melt is distributed at depth, contributing to fjord stratification, thus impacting melt and dynamics of the glacier front. We model the high-silled Ilulissat Icefjord in Western Greenland with the MITgcm ocean model, using the IceBerg package to study the effect of icebergs on fjord properties, and compare our results with available observations from 2014. We find the subglacial discharge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Icebergs are necessary to include to correctly understand the properties of Ilulissat Icefjord, since they modify the fjord in three main ways: First, icebergs cool and freshen the water column within their vertical extent; Second, icebergs depress the neutral buoyancy depth of the plume and the outflow route of glacially modified water; Third, icebergs modify the deep basin, below their vertical extent, due to both increased entrainment of glacially modified water into the fjord, and iceberg modification of the incoming ambient water. Furthermore, the depressed neutral buoyancy depth of the plume limits melt to the deep section of the front of Sermeq Kujalleq (Jakobshavn Isbræ) even during peak summer, and thus promotes undercutting. We postulate that the impact of icebergs on the neutral buoyancy depth of the plume is a key mechanism connecting iceberg melange and glacier calving, independent of mechanical support.