Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
49 Research products, page 1 of 5

  • European Marine Science
  • Research data
  • Other research products
  • EU
  • CY
  • IL
  • Ocean Science (OS)

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Droste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; +2 more
    Project: EC | CARBOCHANGE (264879)

    Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekström Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air–sea CO2 flux that can range between a strong sink (−24 mmol m−2 d−1) and a small source (3 mmol m−2 d−1) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.

  • Open Access English
    Authors: 
    Vergara-Jara, Maximiliano J.; Hopwood, Mark J.; Browning, Thomas J.; Rapp, Insa; Torres, Rodrigo; Reid, Brian; Achterberg, Eric P.; Iriarte, José Luis;
    Project: EC | OCEAN-CERTAIN (603773)

    Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread across northern Patagonia and into the southeast Pacific and southwest Atlantic oceans. Here, we report on field surveys conducted in the coastal region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite-derived chlorophyll a measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial–temporal gradients in the offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release from ash into solution of total alkalinity, trace elements (dissolved Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (F−, Cl−, SO42-, NO3-, Li+, Na+, NH4+, K+, Mg2+ and Ca2+). Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were approximately 2–4 times higher than usual (up to 1.4 × 1011 cells m−2, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the 2 weeks following the eruption. Any mechanistic link between ash deposition and the Reloncaví diatom bloom can, however, only be speculated on due to the lack of data immediately preceding and following the eruption. In the offshore southeast Pacific, a short-duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe fertilisation of a region where phytoplankton growth is typically Fe limited at this time of year. Conversely, no clear fertilisation on the same timescale was found in the area subject to an ash plume over the southwest Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth. This was consistent with no significant release of fixed nitrogen (NOx or NH4) from Calbuco ash. In addition to the release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (< 5 mg L−1) of ash were an unusually prolific source of Fe(II) into chilled seawater (up to 1.0 µmol Fe g−1), producing a pulse of Fe(II) typically released mainly during the first minute after addition to seawater. This release would not be detected (as Fe(II) or dissolved Fe) following standard leaching protocols at room temperature. A pulse of Fe(II) release upon addition of Calbuco ash to seawater made it an unusually efficient dissolved Fe source. The fraction of dissolved Fe released as Fe(II) from Calbuco ash (∼ 18 %–38 %) was roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean following long-range atmospheric transport.

  • Open Access English
    Authors: 
    Vergara-Jara, Maximiliano J.; Hopwood, Mark J.; Browning, Thomas J.; Rapp, Insa; Torres, Rodrigo; Reid, Brian; Achterberg, Eric P.; Iriarte, José Luis;
    Project: EC | OCEAN-CERTAIN (603773)

    Following the April 2015 eruption of the Calbuco volcano, an extensive ash plume spread across northern Patagonia and into the SE Pacific and SW Atlantic Ocean. Here we report the results of field surveys conducted in the marine region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite derived chlorophyll-a measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial-temporal gradient in offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release of total alkalinity, trace elements (Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (Fl, Cl, SO4, NO3, Li, Na, NH4, K, Mg, Ca) from ash into solution. Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were higher than usual (up to 1.4 × 1011 cells m−2, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the two weeks following the eruption. In the offshore SE Pacific, a short duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe-fertilization of a region where phytoplankton growth is typically Fe-limited at this time of year. Conversely, no clear fertilization was found in the area subject to an ash plume over the SW Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth which was consistent with no significant release of fixed nitrogen from ash. In addition to release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (−1) of freshly deposited ash were an unusually prolific source of Fe(II) into solution (up to 1.0 µmol Fe g−1), suggesting that the release of bioaccessible Fe from ash sources may generally be under-estimated when quantified from aged ash. This release of Fe(II) may make freshly deposited ash an unusually efficient dissolved Fe source with the 18–38 % fraction of dissolved Fe released as Fe(II) from Calbuco ash roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean.

  • Open Access English
    Authors: 
    Vilibić, Ivica; Mihanović, Hrvoje; Janeković, Ivica; Denamiel, Cléa; Poulain, Pierre-Marie; Orlić, Mirko; Dunić, Natalija; Dadić, Vlado; Pasarić, Mira; Muslim, Stipe; +8 more
    Project: EC | EUROFLEETS2 (312762)

    The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity–temperature–depth probes, glider, profiling float) and are accompanied by the atmosphere–ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF), thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i) balanced inward–outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii) outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.

  • Open Access English
    Authors: 
    Guerra, Davide; Schroeder, Katrin; Borghini, Mireno; Camatti, Elisa; Pansera, Marco; Schroeder, Anna; Sparnocchia, Stefania; Chiggiato, Jacopo;
    Project: EC | JERICO-NEXT (654410), EC | OCEAN-CERTAIN (603773)

    Diel vertical migration (DVM) is a survival strategy adopted by zooplankton that we investigated in the Corsica Channel using acoustic Doppler current profiler (ADCP) data from April 2014 to November 2016. The principal aim of the study is to characterize migration patterns and biomass temporal evolution of zooplankton along the water column. The ADCP measured vertical velocity and echo intensity in the water column range between about 70 and 390 m (the bottom depth is 443 m). During the investigated period, zooplanktonic biomass had a well-defined daily and seasonal cycle, with peaks occurring in late winter to spring (2015 and 2016) when the stratification of the water column is weaker. Zooplanktonic biomass temporal distribution in the whole water column is well correlated with biomass of primary producers, estimated with satellite data. Zooplanktonic blooming and non-blooming periods have been identified and studied separately. During the non-blooming period zooplanktonic biomass was most abundant in the upper and the deep layers, while during the blooming period the upper-layer maximum in zooplanktonic biomass disappeared and the deep layer with high zooplanktonic biomass became thicker. These two layers are likely to correspond to two different zooplanktonic communities. The evolution of zooplanktonic biomass is well correlated with chlorophyll, with phytoplankton biomass peaks preceding the upper-layer secondary production by a lag of about 3.5 weeks. Nocturnal DVM appears to be the main pattern during both periods, but reverse and twilight migration are also detected. Nocturnal DVM was more evident at mid-water than in the deep and the upper layers. DVM occurred with different intensities during blooming and non-blooming periods. One of the main outcomes is that the principal drivers for DVM are light intensity and stratification, but other factors, like the moon cycle and primary production, are also taken in consideration.

  • Open Access English
    Authors: 
    Østerhus, Svein; Woodgate, Rebecca; Valdimarsson, Héðinn; Turrell, Bill; Steur, Laura; Quadfasel, Detlef; Olsen, Steffen M.; Moritz, Martin; Lee, Craig M.; Larsen, Karin Margretha H.; +7 more
    Project: EC | NACLIM (308299), NSF | The Arctic Observing Netw... (1022472), NSF | IPY: An Innovative Observ... (0632231), EC | Blue-Action (727852), NSF | An Observational Array fo... (0230381), EC | THOR (212643)

    The Arctic Mediterranean (AM) is the collective name for the Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into this region through the Bering Strait (Pacific inflow) and through the passages across the Greenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modified waters leave the AM in several flow branches which are grouped into two different categories: (1) overflow of dense water through the deep passages across the Greenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow – on both sides of Greenland. These exchanges transport heat and salt into and out of the AM and are important for conditions in the AM. They are also part of the global ocean circulation and climate system. Attempts to quantify the transports by various methods have been made for many years, but only recently the observational coverage has become sufficiently complete to allow an integrated assessment of the AM exchanges based solely on observations. In this study, we focus on the transport of water and have collected data on volume transport for as many AM-exchange branches as possible between 1993 and 2015. The total AM import (oceanic inflows plus freshwater) is found to be 9.1 Sv (sverdrup, 1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and has the amplitude of the seasonal variation close to 1 Sv and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow with the remaining two-thirds leaving as overflow. The overflow water is mainly produced from modified Atlantic inflow and around 70 % of the total Atlantic inflow is converted into overflow, indicating a strong coupling between these two exchanges. The surface outflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but is still approximately two-thirds of modified Atlantic water. For the inflow branches and the two main overflow branches (Denmark Strait and Faroe Bank Channel), systematic monitoring of volume transport has been established since the mid-1990s, and this enables us to estimate trends for the AM exchanges as a whole. At the 95 % confidence level, only the inflow of Pacific water through the Bering Strait showed a statistically significant trend, which was positive. Both the total AM inflow and the combined transport of the two main overflow branches also showed trends consistent with strengthening, but they were not statistically significant. They do suggest, however, that any significant weakening of these flows during the last two decades is unlikely and the overall message is that the AM exchanges remained remarkably stable in the period from the mid-1990s to the mid-2010s. The overflows are the densest source water for the deep limb of the North Atlantic part of the meridional overturning circulation (AMOC), and this conclusion argues that the reported weakening of the AMOC was not due to overflow weakening or reduced overturning in the AM. Although the combined data set has made it possible to establish a consistent budget for the AM exchanges, the observational coverage for some of the branches is limited, which introduces considerable uncertainty. This lack of coverage is especially extreme for the surface outflow through the Denmark Strait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottish shelf. We recommend that more effort is put into observing these flows as well as maintaining the monitoring systems established for the other exchange branches.

  • Open Access English
    Authors: 
    Hayes, Daniel R.; Dobricic, Srdjan; Gildor, Hezi;
    Project: EC | GROOM (284321), EC | BRIDGES (635359)

    An operational data assimilation system for the Eastern Mediterranean is described and evaluated for a 6-month twin experiment. In the assimilative run, glider profiles of temperature and salinity are assimilated daily into a high resolution ocean forecast, after an initial spin up of one week. In the control run, the same initial and boundary conditions are used to produce an operational forecast, but without assimilation of in situ data. While both runs were similar for most of the time and most of the domain, significant differences were found near the region of assimilation, particularly when the glider passed through the anticyclonic Cyprus eddy. Root mean square differences of the misfits between the temperature and salinity observations and the model background field at those locations (before any assimilation) were approximately 15% lower in the assimilative run. Improvements in the forecasting capability of surface currents were found, and would provide a significant improvement of predictive capacity for applications such as pollutant spreading or offshore operational safety.

  • Open Access English
    Authors: 
    Hansen, Bogi; Húsgarð Larsen, Karin Margretha; Hátún, Hjálmar; Østerhus, Svein;
    Project: EC | NACLIM (308299), EC | THOR (212643)

    The Faroe Bank Channel (FBC) is the deepest passage across the Greenland–Scotland Ridge (GSR) and there is a continuous deep flow of cold and dense water passing through it from the Arctic Mediterranean into the North Atlantic and further to the rest of the world ocean. This FBC overflow is part of the Atlantic Meridional Overturning Circulation (AMOC), which has recently been suggested to have weakened. From November 1995 to May 2015, the FBC overflow has been monitored by a continuous ADCP (acoustic Doppler current profiler) mooring, which has been deployed in the middle of this narrow channel. Combined with regular hydrography cruises and several short-term mooring experiments, this allowed us to construct time series of volume transport and to follow changes in the hydrographic properties and density of the FBC overflow. The mean kinematic overflow, derived solely from the velocity field, was found to be (2.2 ± 0.2) Sv (1 Sv = 106 m3 s−1) with a slight, but not statistically significant, positive trend. The coldest part, and probably the bulk, of the FBC overflow warmed by a bit more than 0.1 °C, especially after 2002, increasing the transport of heat into the deep ocean. This warming was, however, accompanied by increasing salinities, which seem to have compensated for the temperature-induced density decrease. Thus, the FBC overflow has remained stable in volume transport as well as density during the 2 decades from 1995 to 2015. After crossing the GSR, the overflow is modified by mixing and entrainment, but the associated change in volume (and heat) transport is still not well known. Whatever effect this has on the AMOC and the global energy balance, our observed stability of the FBC overflow is consistent with reported observations from the other main overflow branch, the Denmark Strait overflow, and the three Atlantic inflow branches to the Arctic Mediterranean that feed the overflows. If the AMOC has weakened during the last 2 decades, it is not likely to have been due to its northernmost extension – the exchanges across the Greenland–Scotland Ridge.

  • Open Access English
    Authors: 
    Tesi, Tommaso; Geibel, Marc C.; Pearce, Christof; Panova, Elena; Vonk, Jorien E.; Karlsson, Emma; Salvado, Joan A.; Kruså, Martin; Bröder, Lisa; Humborg, Christoph; +2 more
    Project: EC | CC-TOP (695331), EC | ARCTIC (300259), EC | ACTIVE PERMAFROST (328049)

    Recent Arctic studies suggest that sea ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature of the plankton-dominated fraction of particulate organic matter (POM) collected along the Siberian Shelf. POM (> 10 µm) samples were analysed using molecular biomarkers (CuO oxidation and IP25) and dual-carbon isotopes (δ13C and Δ14C). In addition, surface water chemical properties were integrated with the POM (> 10 µm) dataset to understand the link between plankton composition and environmental conditions. δ13C and Δ14C exhibited a large variability in the POM (> 10 µm) distribution while the content of terrestrial biomarkers in the POM was negligible. In the Laptev Sea (LS), δ13C and Δ14C of POM (> 10 µm) suggested a heterotrophic environment in which dissolved organic carbon (DOC) from the Lena River was the primary source of metabolisable carbon. Within the Lena plume, terrestrial DOC probably became part of the food web via bacteria uptake and subsequently transferred to relatively other heterotrophic communities (e.g. dinoflagellates). Moving eastwards toward the sea-ice-dominated East Siberian Sea (ESS), the system became progressively more autotrophic. Comparison between δ13C of POM (> 10 µm) samples and CO2aq concentrations revealed that the carbon isotope fractionation increased moving towards the easternmost and most productive stations. In a warming scenario characterised by enhanced terrestrial DOC release (thawing permafrost) and progressive sea ice decline, heterotrophic conditions might persist in the LS while the nutrient-rich Pacific inflow will likely stimulate greater primary productivity in the ESS. The contrasting trophic conditions will result in a sharp gradient in δ13C between the LS and ESS, similar to what is documented in our semi-synoptic study.

  • Open Access English
    Authors: 
    Kapsenberg, Lydia; Alliouane, Samir; Gazeau, Frédéric; Mousseau, Laure; Gattuso, Jean-Pierre;
    Project: NSF | OCE PRF: Track 2 (Interna... (1521597), EC | EPOCA (211384), EC | MEDSEA (265103)

    Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (CT) and total alkalinity (AT). Parameters of the carbonate system such as pH (pHT, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was −0.0028 ± 0.0003 units pHT yr−1. This rate is larger than previously identified open-ocean trends due to rapid warming that occurred over the study period (0.072 ± 0.022 °C yr−1). The total pHT change over the study period was of similar magnitude as the diel pHT variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO2) forcing (59 %, 2.08 ± 0.01 ppm CO2 yr−1) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO2 accounted for approximately 40 % of the observed increase in CT (2.97 ± 0.20 µmol kg−1 yr−1). The remaining increase in CT may have been driven by the same unidentified process that caused an increase in AT (2.08 ± 0.19 µmol kg−1 yr−1). Based on the analysis of monthly trends, synchronous increases in CT and AT were fastest in the spring–summer transition. The driving process of the interannual increase in AT has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land–sea interface. This is the first coastal acidification time series providing multiyear data at high temporal resolution. The data confirm rapid warming in the Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total alkalinity.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
49 Research products, page 1 of 5
  • Open Access English
    Authors: 
    Droste, Elise S.; Hoppema, Mario; González-Dávila, Melchor; Santana-Casiano, Juana Magdalena; Queste, Bastien Y.; Dall'Olmo, Giorgio; Venables, Hugh J.; Rohardt, Gerd; Ossebaar, Sharyn; Schuller, Daniel; +2 more
    Project: EC | CARBOCHANGE (264879)

    Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekström Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air–sea CO2 flux that can range between a strong sink (−24 mmol m−2 d−1) and a small source (3 mmol m−2 d−1) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.

  • Open Access English
    Authors: 
    Vergara-Jara, Maximiliano J.; Hopwood, Mark J.; Browning, Thomas J.; Rapp, Insa; Torres, Rodrigo; Reid, Brian; Achterberg, Eric P.; Iriarte, José Luis;
    Project: EC | OCEAN-CERTAIN (603773)

    Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread across northern Patagonia and into the southeast Pacific and southwest Atlantic oceans. Here, we report on field surveys conducted in the coastal region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite-derived chlorophyll a measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial–temporal gradients in the offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release from ash into solution of total alkalinity, trace elements (dissolved Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (F−, Cl−, SO42-, NO3-, Li+, Na+, NH4+, K+, Mg2+ and Ca2+). Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were approximately 2–4 times higher than usual (up to 1.4 × 1011 cells m−2, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the 2 weeks following the eruption. Any mechanistic link between ash deposition and the Reloncaví diatom bloom can, however, only be speculated on due to the lack of data immediately preceding and following the eruption. In the offshore southeast Pacific, a short-duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe fertilisation of a region where phytoplankton growth is typically Fe limited at this time of year. Conversely, no clear fertilisation on the same timescale was found in the area subject to an ash plume over the southwest Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth. This was consistent with no significant release of fixed nitrogen (NOx or NH4) from Calbuco ash. In addition to the release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (< 5 mg L−1) of ash were an unusually prolific source of Fe(II) into chilled seawater (up to 1.0 µmol Fe g−1), producing a pulse of Fe(II) typically released mainly during the first minute after addition to seawater. This release would not be detected (as Fe(II) or dissolved Fe) following standard leaching protocols at room temperature. A pulse of Fe(II) release upon addition of Calbuco ash to seawater made it an unusually efficient dissolved Fe source. The fraction of dissolved Fe released as Fe(II) from Calbuco ash (∼ 18 %–38 %) was roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean following long-range atmospheric transport.

  • Open Access English
    Authors: 
    Vergara-Jara, Maximiliano J.; Hopwood, Mark J.; Browning, Thomas J.; Rapp, Insa; Torres, Rodrigo; Reid, Brian; Achterberg, Eric P.; Iriarte, José Luis;
    Project: EC | OCEAN-CERTAIN (603773)

    Following the April 2015 eruption of the Calbuco volcano, an extensive ash plume spread across northern Patagonia and into the SE Pacific and SW Atlantic Ocean. Here we report the results of field surveys conducted in the marine region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite derived chlorophyll-a measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial-temporal gradient in offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release of total alkalinity, trace elements (Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (Fl, Cl, SO4, NO3, Li, Na, NH4, K, Mg, Ca) from ash into solution. Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were higher than usual (up to 1.4 × 1011 cells m−2, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the two weeks following the eruption. In the offshore SE Pacific, a short duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe-fertilization of a region where phytoplankton growth is typically Fe-limited at this time of year. Conversely, no clear fertilization was found in the area subject to an ash plume over the SW Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth which was consistent with no significant release of fixed nitrogen from ash. In addition to release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (−1) of freshly deposited ash were an unusually prolific source of Fe(II) into solution (up to 1.0 µmol Fe g−1), suggesting that the release of bioaccessible Fe from ash sources may generally be under-estimated when quantified from aged ash. This release of Fe(II) may make freshly deposited ash an unusually efficient dissolved Fe source with the 18–38 % fraction of dissolved Fe released as Fe(II) from Calbuco ash roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean.

  • Open Access English
    Authors: 
    Vilibić, Ivica; Mihanović, Hrvoje; Janeković, Ivica; Denamiel, Cléa; Poulain, Pierre-Marie; Orlić, Mirko; Dunić, Natalija; Dadić, Vlado; Pasarić, Mira; Muslim, Stipe; +8 more
    Project: EC | EUROFLEETS2 (312762)

    The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity–temperature–depth probes, glider, profiling float) and are accompanied by the atmosphere–ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF), thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i) balanced inward–outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii) outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.

  • Open Access English
    Authors: 
    Guerra, Davide; Schroeder, Katrin; Borghini, Mireno; Camatti, Elisa; Pansera, Marco; Schroeder, Anna; Sparnocchia, Stefania; Chiggiato, Jacopo;
    Project: EC | JERICO-NEXT (654410), EC | OCEAN-CERTAIN (603773)

    Diel vertical migration (DVM) is a survival strategy adopted by zooplankton that we investigated in the Corsica Channel using acoustic Doppler current profiler (ADCP) data from April 2014 to November 2016. The principal aim of the study is to characterize migration patterns and biomass temporal evolution of zooplankton along the water column. The ADCP measured vertical velocity and echo intensity in the water column range between about 70 and 390 m (the bottom depth is 443 m). During the investigated period, zooplanktonic biomass had a well-defined daily and seasonal cycle, with peaks occurring in late winter to spring (2015 and 2016) when the stratification of the water column is weaker. Zooplanktonic biomass temporal distribution in the whole water column is well correlated with biomass of primary producers, estimated with satellite data. Zooplanktonic blooming and non-blooming periods have been identified and studied separately. During the non-blooming period zooplanktonic biomass was most abundant in the upper and the deep layers, while during the blooming period the upper-layer maximum in zooplanktonic biomass disappeared and the deep layer with high zooplanktonic biomass became thicker. These two layers are likely to correspond to two different zooplanktonic communities. The evolution of zooplanktonic biomass is well correlated with chlorophyll, with phytoplankton biomass peaks preceding the upper-layer secondary production by a lag of about 3.5 weeks. Nocturnal DVM appears to be the main pattern during both periods, but reverse and twilight migration are also detected. Nocturnal DVM was more evident at mid-water than in the deep and the upper layers. DVM occurred with different intensities during blooming and non-blooming periods. One of the main outcomes is that the principal drivers for DVM are light intensity and stratification, but other factors, like the moon cycle and primary production, are also taken in consideration.

  • Open Access English
    Authors: 
    Østerhus, Svein; Woodgate, Rebecca; Valdimarsson, Héðinn; Turrell, Bill; Steur, Laura; Quadfasel, Detlef; Olsen, Steffen M.; Moritz, Martin; Lee, Craig M.; Larsen, Karin Margretha H.; +7 more
    Project: EC | NACLIM (308299), NSF | The Arctic Observing Netw... (1022472), NSF | IPY: An Innovative Observ... (0632231), EC | Blue-Action (727852), NSF | An Observational Array fo... (0230381), EC | THOR (212643)

    The Arctic Mediterranean (AM) is the collective name for the Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into this region through the Bering Strait (Pacific inflow) and through the passages across the Greenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modified waters leave the AM in several flow branches which are grouped into two different categories: (1) overflow of dense water through the deep passages across the Greenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow – on both sides of Greenland. These exchanges transport heat and salt into and out of the AM and are important for conditions in the AM. They are also part of the global ocean circulation and climate system. Attempts to quantify the transports by various methods have been made for many years, but only recently the observational coverage has become sufficiently complete to allow an integrated assessment of the AM exchanges based solely on observations. In this study, we focus on the transport of water and have collected data on volume transport for as many AM-exchange branches as possible between 1993 and 2015. The total AM import (oceanic inflows plus freshwater) is found to be 9.1 Sv (sverdrup, 1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and has the amplitude of the seasonal variation close to 1 Sv and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow with the remaining two-thirds leaving as overflow. The overflow water is mainly produced from modified Atlantic inflow and around 70 % of the total Atlantic inflow is converted into overflow, indicating a strong coupling between these two exchanges. The surface outflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but is still approximately two-thirds of modified Atlantic water. For the inflow branches and the two main overflow branches (Denmark Strait and Faroe Bank Channel), systematic monitoring of volume transport has been established since the mid-1990s, and this enables us to estimate trends for the AM exchanges as a whole. At the 95 % confidence level, only the inflow of Pacific water through the Bering Strait showed a statistically significant trend, which was positive. Both the total AM inflow and the combined transport of the two main overflow branches also showed trends consistent with strengthening, but they were not statistically significant. They do suggest, however, that any significant weakening of these flows during the last two decades is unlikely and the overall message is that the AM exchanges remained remarkably stable in the period from the mid-1990s to the mid-2010s. The overflows are the densest source water for the deep limb of the North Atlantic part of the meridional overturning circulation (AMOC), and this conclusion argues that the reported weakening of the AMOC was not due to overflow weakening or reduced overturning in the AM. Although the combined data set has made it possible to establish a consistent budget for the AM exchanges, the observational coverage for some of the branches is limited, which introduces considerable uncertainty. This lack of coverage is especially extreme for the surface outflow through the Denmark Strait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottish shelf. We recommend that more effort is put into observing these flows as well as maintaining the monitoring systems established for the other exchange branches.

  • Open Access English
    Authors: 
    Hayes, Daniel R.; Dobricic, Srdjan; Gildor, Hezi;
    Project: EC | GROOM (284321), EC | BRIDGES (635359)

    An operational data assimilation system for the Eastern Mediterranean is described and evaluated for a 6-month twin experiment. In the assimilative run, glider profiles of temperature and salinity are assimilated daily into a high resolution ocean forecast, after an initial spin up of one week. In the control run, the same initial and boundary conditions are used to produce an operational forecast, but without assimilation of in situ data. While both runs were similar for most of the time and most of the domain, significant differences were found near the region of assimilation, particularly when the glider passed through the anticyclonic Cyprus eddy. Root mean square differences of the misfits between the temperature and salinity observations and the model background field at those locations (before any assimilation) were approximately 15% lower in the assimilative run. Improvements in the forecasting capability of surface currents were found, and would provide a significant improvement of predictive capacity for applications such as pollutant spreading or offshore operational safety.

  • Open Access English
    Authors: 
    Hansen, Bogi; Húsgarð Larsen, Karin Margretha; Hátún, Hjálmar; Østerhus, Svein;
    Project: EC | NACLIM (308299), EC | THOR (212643)

    The Faroe Bank Channel (FBC) is the deepest passage across the Greenland–Scotland Ridge (GSR) and there is a continuous deep flow of cold and dense water passing through it from the Arctic Mediterranean into the North Atlantic and further to the rest of the world ocean. This FBC overflow is part of the Atlantic Meridional Overturning Circulation (AMOC), which has recently been suggested to have weakened. From November 1995 to May 2015, the FBC overflow has been monitored by a continuous ADCP (acoustic Doppler current profiler) mooring, which has been deployed in the middle of this narrow channel. Combined with regular hydrography cruises and several short-term mooring experiments, this allowed us to construct time series of volume transport and to follow changes in the hydrographic properties and density of the FBC overflow. The mean kinematic overflow, derived solely from the velocity field, was found to be (2.2 ± 0.2) Sv (1 Sv = 106 m3 s−1) with a slight, but not statistically significant, positive trend. The coldest part, and probably the bulk, of the FBC overflow warmed by a bit more than 0.1 °C, especially after 2002, increasing the transport of heat into the deep ocean. This warming was, however, accompanied by increasing salinities, which seem to have compensated for the temperature-induced density decrease. Thus, the FBC overflow has remained stable in volume transport as well as density during the 2 decades from 1995 to 2015. After crossing the GSR, the overflow is modified by mixing and entrainment, but the associated change in volume (and heat) transport is still not well known. Whatever effect this has on the AMOC and the global energy balance, our observed stability of the FBC overflow is consistent with reported observations from the other main overflow branch, the Denmark Strait overflow, and the three Atlantic inflow branches to the Arctic Mediterranean that feed the overflows. If the AMOC has weakened during the last 2 decades, it is not likely to have been due to its northernmost extension – the exchanges across the Greenland–Scotland Ridge.

  • Open Access English
    Authors: 
    Tesi, Tommaso; Geibel, Marc C.; Pearce, Christof; Panova, Elena; Vonk, Jorien E.; Karlsson, Emma; Salvado, Joan A.; Kruså, Martin; Bröder, Lisa; Humborg, Christoph; +2 more
    Project: EC | CC-TOP (695331), EC | ARCTIC (300259), EC | ACTIVE PERMAFROST (328049)

    Recent Arctic studies suggest that sea ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature of the plankton-dominated fraction of particulate organic matter (POM) collected along the Siberian Shelf. POM (> 10 µm) samples were analysed using molecular biomarkers (CuO oxidation and IP25) and dual-carbon isotopes (δ13C and Δ14C). In addition, surface water chemical properties were integrated with the POM (> 10 µm) dataset to understand the link between plankton composition and environmental conditions. δ13C and Δ14C exhibited a large variability in the POM (> 10 µm) distribution while the content of terrestrial biomarkers in the POM was negligible. In the Laptev Sea (LS), δ13C and Δ14C of POM (> 10 µm) suggested a heterotrophic environment in which dissolved organic carbon (DOC) from the Lena River was the primary source of metabolisable carbon. Within the Lena plume, terrestrial DOC probably became part of the food web via bacteria uptake and subsequently transferred to relatively other heterotrophic communities (e.g. dinoflagellates). Moving eastwards toward the sea-ice-dominated East Siberian Sea (ESS), the system became progressively more autotrophic. Comparison between δ13C of POM (> 10 µm) samples and CO2aq concentrations revealed that the carbon isotope fractionation increased moving towards the easternmost and most productive stations. In a warming scenario characterised by enhanced terrestrial DOC release (thawing permafrost) and progressive sea ice decline, heterotrophic conditions might persist in the LS while the nutrient-rich Pacific inflow will likely stimulate greater primary productivity in the ESS. The contrasting trophic conditions will result in a sharp gradient in δ13C between the LS and ESS, similar to what is documented in our semi-synoptic study.

  • Open Access English
    Authors: 
    Kapsenberg, Lydia; Alliouane, Samir; Gazeau, Frédéric; Mousseau, Laure; Gattuso, Jean-Pierre;
    Project: NSF | OCE PRF: Track 2 (Interna... (1521597), EC | EPOCA (211384), EC | MEDSEA (265103)

    Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (CT) and total alkalinity (AT). Parameters of the carbonate system such as pH (pHT, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was −0.0028 ± 0.0003 units pHT yr−1. This rate is larger than previously identified open-ocean trends due to rapid warming that occurred over the study period (0.072 ± 0.022 °C yr−1). The total pHT change over the study period was of similar magnitude as the diel pHT variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO2) forcing (59 %, 2.08 ± 0.01 ppm CO2 yr−1) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO2 accounted for approximately 40 % of the observed increase in CT (2.97 ± 0.20 µmol kg−1 yr−1). The remaining increase in CT may have been driven by the same unidentified process that caused an increase in AT (2.08 ± 0.19 µmol kg−1 yr−1). Based on the analysis of monthly trends, synchronous increases in CT and AT were fastest in the spring–summer transition. The driving process of the interannual increase in AT has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land–sea interface. This is the first coastal acidification time series providing multiyear data at high temporal resolution. The data confirm rapid warming in the Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total alkalinity.