Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
27 Research products, page 1 of 3

  • European Marine Science
  • Research data
  • Other research products
  • European Commission
  • ES
  • English
  • European Marine Science

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Bennett, Scott; Alcovero, Teresa; Kletou, Demetris; Antoniou, Charalampos; Boada, Jordi; Buñuel, Xavier; Cucala, Lidia; Jorda, Gabriel; Kleitou, Periklis; Roca, Guillem; +4 more
    Publisher: Dryad
    Country: Spain
    Project: EC | DPaTh-To-Adapt (659246)

    [Methods] Experiment locations and climate Trans-Mediterranean translocation of Posidonia oceanica fragments took place between Catalunya (Spain), Mallorca (Spain) and Cyprus in July 2018 and were monitored until July 2019 (Fig. 1). Sea surface temperature data for each transplant site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst ) (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at the transplant sites in Catalunya, Mallorca and Cyprus and recorded hourly temperatures throughout the duration of the experiment (one year). In order to obtain an extended time series of temperature at transplant sites, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019. Local climate data was also compared to the global thermal distribution of P. oceanica to assess how representative experimental sites were of the thermal distribution of the species (Supplementary materials). Collectively, seawater temperatures from the three locations span the 16th - 99th percentile of temperatures observed across the global thermal distribution of P. oceanica. As such Catalunya, Mallorca and Cyprus are herein considered to represent the cool-edge, centre and warm-edge of P. oceanica distribution, respectively. Transplantation took place toward warmer climates and procedural controls were conducted within each source location, resulting in six source-to-recipient combinations (i.e. treatments, Fig. 1). Initial collection of P. oceanica, handling and transplantation was carried out simultaneously by coordinated teams in July 2018 (Table S1). Each recipient location was subsequently resampled four times over the course of the experiment, in August/September 2018 (T1), October 2018 (T2), April 2019 (T3) and May/June 2019 (T4, Table S1). Between 60-100 fragments were collected for each treatment. A fragment was defined as a section of P. oceanica containing one apical shoot connected with approximately five vertical shoots by approximately 10-15 cm of rhizome with intact roots. Collection occurred at two sites within each location, separated by approximately 1 km. Within sites, collections were conducted between 4 – 5 m depth and were spaced across the meadow to minimise the dominance of a single clone and damage to the meadow. Upon collection, fragments were transported for up to one hour back to the nearest laboratory in shaded seawater. Handling methods In the laboratory, fragments were placed into holding tanks with aerated seawater, at ambient temperature and a 14:10 light-dark cycle. All shoots were clipped to 25 cm length (from meristem to the tip of the longest leaves), to standardise initial conditions and reduce biomass for transportation. For transport by plane or ferry between locations, fragments were packed in layers within cool-boxes. Each layer was separated by frozen cool-packs wrapped in wet tea towels (rinsed in sea water). All fragments spent 12 hrs inside a cool-box irrespective of their recipient destination, including procedural controls (i.e. cool-cool, centre-centre and warm-warm) to simulate the transit times of the plants travelling furthest from their source location (Fig. 1a). On arrival at the destination, fragments were placed in holding tanks with aerated seawater at ambient temperature as described above in their recipient location for 48 hrs, prior to field transplantation. Measurement methods One day prior to transplantation, fragments were tagged with a unique number and attached to U-shaped peg with cable-ties. Morphological traits for each fragment were measured and included: 1) length of the longest apical leaf, width and number of leaves 2) total number of bite marks on leaves of three vertical shoots per fragment, 3) number of vertical shoots, 4) leaf count of three vertical shoots per fragment and 5) overall horizontal rhizome length. A subset (n=10) of fragments per treatment were marked prior transplantation to measure shoot growth. To do this, all shoots within a single fragment were pierced using a hypodermic needle. Two holes were pierced side-by-side at the base of the leaf/top of the meristem. Transplant methods All transplant sites were located in 4 – 5 m depth in area of open dead-matte, surrounded by P. oceanica meadow. In Mallorca and Cyprus, fragments were distributed between two sites, separated by approximately 1 km. In Catalunya, a lack of suitable dead matte habitat, meant that all fragments were placed in one site. Fragments were planted along parallel transects at 50 cm intervals and with a 50 cm gap between parallel transects (Fig. S1). Different treatments were mixed and deployed haphazardly along each transect. Resampling methods and herbivory On day 10 of the experiment, a severe herbivory event was recorded at both warm-edge translocation sites. Scaled photos of all fragments were taken at this time to record the effects of herbivory on transplants. At the end of each main sampling period (T0 – T1, T1-T2 and T3 – T4), all pierced fragments were collected and taken back to the laboratory to measure shoot growth. At T1, T2 and T3, additional sets of fragments (n = 10 per treatment) were marked using the piercing method to record growth in the subsequent time period. In addition, at T1 and T3, n = 20 shoots within the natural meadow at each site were marked to compare growth rates between the native meadow and transplants. Underwater shoot counts and a scaled photo was taken to record fragment survivorship, shoot mortality, bite marks, and shoot length among all remaining fragments within each site and sampling time. In the laboratory, morphological measurements (described above) were repeated on the collected fragments and growth of transplant and natural meadow shoots was measured. Growth (shoot elongation, cm d-1) of the marked shoots was obtained by measuring the length from the base of meristem to marked holes of each leaf (new growth) of the shoot and dividing the leaf elongation per shoot by the marking period (in days). For each shoot, total leaf length (cm shoot-1) and the number of new leaves was also recorded. The rate of new leaf production (new leaves shoot-1 d-1) was estimated dividing the number of new leaves produced per shoot and the marking period. New growth was dried at 60 ºC for 48 hrs to determine carbon and nitrogen content of the leaves, and carbon to nitrogen (C:N) ratios. Carbon and nitrogen concentrations in the new growth leaf tissue was measured at the beginning of the experiment and each subsequent time point for each treatment. Nutrient analyses were conducted at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan). Underwater photos of shoots were analysed using ImageJ software (https://imagej.net). Maximum leaf length on each shoot in warm-edge transplant sites (cool-warm, centre-warm and warm-warm) were recorded for the initial (day 10) herbivore impact, T1, T2 and T3 time-points and related to transplant nutrient concentrations. Herbivore impact was estimated as the proportional change in length of the longest leaf relative to initial length at T0. Thermal stress Long term maximum temperatures were recorded as the average of annual maximum daily temperatures in each transplant site, averaged between years from 1981-2019. Maximum thermal anomalies were calculated as the difference between daily temperatures in a recipient site over the course of the experiment and the long-term maximum temperature in the source site for each corresponding population. ‘Heat stress’ and ‘recovery’ growth periods of the experiment were defined as T0 -T2 (July-October) and T2-T4 (November-June), respectively, corresponding to periods of positive and negative maximum thermal anomalies. Thermal anomalies experienced by the different transplant treatments were plotted using the ‘geom_flame’, function in the ‘HeatwavesR’ package (Schlegel & Smit 2018) of R (version 3.6.1, 2019) . 1. The prevalence of local adaptation and phenotypic plasticity among populations is critical to accurately predicting when and where climate change impacts will occur. Currently, comparisons of thermal performance between populations are untested for most marine species or overlooked by models predicting the thermal sensitivity of species to extirpation. 2. Here we compared the ecological response and recovery of seagrass populations (Posidonia oceanica) to thermal stress throughout a year-long translocation experiment across a 2800 km gradient in ocean climate. Transplants in central and warm-edge locations experienced temperatures >29 ºC, representing thermal anomalies >5ºC above long-term maxima for cool-edge populations, 1.5ºC for central and <1ºC for warm-edge populations. 3. Cool, central and warm-edge populations differed in thermal performance when grown under common conditions, but patterns contrasted with expectations based on thermal geography. Cool-edge populations did not differ from warm-edge populations under common conditions and performed significantly better than central populations in growth and survival. 4. Our findings reveal that thermal performance does not necessarily reflect the thermal geography of a species. We demonstrate that warm-edge populations can be less sensitive to thermal stress than cooler, central populations suggesting that Mediterranean seagrasses have greater resilience to warming than current paradigms suggest. Australian Research Council, Award: DE200100900. Horizon 2020 Framework Programme, Award: 659246. Fundación BBVA. Peer reviewed

  • English
    Authors: 
    Waldron, Anthony; Adams, Vanessa; Allan, James; Arnell, Andy; Asner, Greg; Atkinson, Scott; Baccini, Alessandro; Bailie, Jonathan EM; Balmford, Andrew; Beau, J Austin; +103 more
    Publisher: Campaign for Nature
    Country: Austria
    Project: EC | BIGSEA (682602), EC | TRIATLAS (817578)

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework

  • Open Access English
    Authors: 
    Hopwood, Mark J.; Sanchez, Nicolas; Polyviou, Despo; Leiknes, Øystein; Gallego-Urrea, Julián Alberto; Achterberg, Eric P.; Ardelan, Murat V.; Aristegui, Javier; Bach, Lennart; Besiktepe, Sengul; +6 more
    Project: EC | OCEAN-CERTAIN (603773)

    The extracellular concentration of H2O2 in surface aquatic environments is controlled by a balance between photochemical production and the microbial synthesis of catalase and peroxidase enzymes to remove H2O2 from solution. In any kind of incubation experiment, the formation rates and equilibrium concentrations of reactive oxygen species (ROSs) such as H2O2 may be sensitive to both the experiment design, particularly to the regulation of incident light, and the abundance of different microbial groups, as both cellular H2O2 production and catalase–peroxidase enzyme production rates differ between species. Whilst there are extensive measurements of photochemical H2O2 formation rates and the distribution of H2O2 in the marine environment, it is poorly constrained how different microbial groups affect extracellular H2O2 concentrations, how comparable extracellular H2O2 concentrations within large-scale incubation experiments are to those observed in the surface-mixed layer, and to what extent a mismatch with environmentally relevant concentrations of ROS in incubations could influence biological processes differently to what would be observed in nature. Here we show that both experiment design and bacterial abundance consistently exert control on extracellular H2O2 concentrations across a range of incubation experiments in diverse marine environments. During four large-scale (>1000 L) mesocosm experiments (in Gran Canaria, the Mediterranean, Patagonia and Svalbard) most experimental factors appeared to exert only minor, or no, direct effect on H2O2 concentrations. For example, in three of four experiments where pH was manipulated to 0.4–0.5 below ambient pH, no significant change was evident in extracellular H2O2 concentrations relative to controls. An influence was sometimes inferred from zooplankton density, but not consistently between different incubation experiments, and no change in H2O2 was evident in controlled experiments using different densities of the copepod Calanus finmarchicus grazing on the diatom Skeletonema costatum (<1 % change in [H2O2] comparing copepod densities from 1 to 10 L−1). Instead, the changes in H2O2 concentration contrasting high- and low-zooplankton incubations appeared to arise from the resulting changes in bacterial activity. The correlation between bacterial abundance and extracellular H2O2 was stronger in some incubations than others (R2 range 0.09 to 0.55), yet high bacterial densities were consistently associated with low H2O2. Nonetheless, the main control on H2O2 concentrations during incubation experiments relative to those in ambient, unenclosed waters was the regulation of incident light. In an open (lidless) mesocosm experiment in Gran Canaria, H2O2 was persistently elevated (2–6-fold) above ambient concentrations; whereas using closed high-density polyethylene mesocosms in Crete, Svalbard and Patagonia H2O2 within incubations was always reduced (median 10 %–90 %) relative to ambient waters.

  • Open Access English
    Authors: 
    Hopwood, Mark J.; Santana-González, Carolina; Gallego-Urrea, Julian; Sanchez, Nicolas; Achterberg, Eric P.; Ardelan, Murat V.; Gledhill, Martha; González-Dávila, Melchor; Hoffmann, Linn; Leiknes, Øystein; +3 more
    Publisher: Copernicus Publications under license by EGU
    Project: EC | OCEAN-CERTAIN (603773)

    The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist almost exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II), the speciation of which is uncertain. Here we deploy flow injection analysis to measure in situ Fe(II) concentrations during a series of mesocosm/microcosm/multistressor experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During five mesocosm/microcosm/multistressor experiments in Svalbard and Patagonia, where dissolved (0.2 µm) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24 %–65 % of DFe, suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were less than calculated constants derived from ambient temperature, salinity, pH, and dissolved O2. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations <2 nM, suggesting that the effect may have arisen from organic Fe(II) ligands. This apparent enhancement of Fe(II) stability under post-bloom conditions and the existence of such a high fraction of DFe as Fe(II) challenge the assumption that DFe speciation in coastal seawater is dominated by ligand bound-Fe(III) species.

  • Open Access English
    Authors: 
    Allen, John T.; Munoz, Cristian; Gardiner, Jim; Reeve, Krissy A.; Alou-Font, Eva; Zarokanellos, Nikolaos;
    Project: EC | JERICO-NEXT (654410)

    Glider vehicles are now perhaps some of the most prolific providers of real-time and near-real-time operational oceanographic data. However, the data from these vehicles can and should be considered to have a long-term legacy value capable of playing a critical role in understanding and separating inter-annual, inter-decadal, and longterm global change. To achieve this, we have to go further than simply assuming the manufacturer’s calibrations, and field correct glider data in a more traditional way, for example, by careful comparison to water bottle calibrated lowered CTD datasets and/or “gold” standard recent climatologies. In this manuscript, we bring into the 21st century a historical technique that has been used manually by oceanographers for many years/decades for field correction/inter-calibration, thermal lag correction, and adjustment for biological fouling. The technique has now been made semi-automatic for machine processing of oceanographic glider data, although its future and indeed its origins have far wider scope. The subject of this manuscript is drawn from the original Description of Work (DoW) for a key task in the recently completed JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatories) EU-funded program, but goes on to consider future application and the suitability for integration with machine learning. Refereed 14.A Sea surface salinity Subsurface salinity TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc) Standard Operating Procedure 2019-12-03

  • Open Access English
    Authors: 
    Maffezzoli, Niccolò; Vallelonga, Paul; Edwards, Ross; Saiz-Lopez, Alfonso; Turetta, Clara; Kjær, Helle Astrid; Barbante, Carlo; Vinther, Bo; Spolaor, Andrea;
    Project: EC | CLIMAHAL (726349), EC | ICE2ICE (610055)

    Although it has been demonstrated that the speed and magnitude of the recent Arctic sea ice decline is unprecedented for the past 1450 years, few records are available to provide a paleoclimate context for Arctic sea ice extent. Bromine enrichment in ice cores has been suggested to indicate the extent of newly formed sea ice areas. Despite the similarities among sea ice indicators and ice core bromine enrichment records, uncertainties still exist regarding the quantitative linkages between bromine reactive chemistry and the first-year sea ice surfaces. Here we present a 120 000-year record of bromine enrichment from the RECAP (REnland ice CAP) ice core, coastal east Greenland, and interpret it as a record of first-year sea ice. We compare it to existing sea ice records from marine cores and tentatively reconstruct past sea ice conditions in the North Atlantic as far north as the Fram Strait (50–85∘ N). Our interpretation implies that during the last deglaciation, the transition from multi-year to first-year sea ice started at ∼17.5 ka, synchronously with sea ice reductions observed in the eastern Nordic Seas and with the increase in North Atlantic ocean temperature. First-year sea ice reached its maximum at 12.4–11.8 ka during the Younger Dryas, after which open-water conditions started to dominate, consistent with sea ice records from the eastern Nordic Seas and the North Icelandic shelf. Our results show that over the last 120 000 years, multi-year sea ice extent was greatest during Marine Isotope Stage (MIS) 2 and possibly during MIS 4, with more extended first-year sea ice during MIS 3 and MIS 5. Sea ice extent during the Holocene (MIS 1) has been less than at any time in the last 120 000 years.

  • Open Access English
    Authors: 
    Paradis, Sarah; Pusceddu, Antonio; Masqué, Pere; Puig, Pere; Moccia, Davide; Russo, Tommaso; Iacono, Claudio;
    Project: EC | EUROFLEETS2 (312762)

    Bottom trawling in the deep sea is one of the main drivers of sediment resuspension, eroding the seafloor and altering the content and composition of sedimentary organic matter (OM). The physical and biogeochemical impacts of bottom trawling were studied on the continental slope of the Gulf of Castellammare, Sicily (southwestern Mediterranean), through the analysis of two triplicate sediment cores collected at trawled and untrawled sites (∼550 m water depth) during the summer of 2016. Geochemical and sedimentological parameters (excess 210Pb, excess 234Th, 137Cs, dry bulk density, and grain size), elemental (organic carbon and nitrogen) and biochemical composition of sedimentary OM (proteins, carbohydrates, lipids), as well as its freshness (phytopigments) and degradation rates were determined in both coring locations. The untrawled site had a sedimentation rate of 0.15 cm yr−1 and presented a 6 cm thick surface mixed layer that contained siltier sediment with low excess 210Pb concentrations, possibly resulting from the resuspension, posterior advection, and eventual deposition of coarser and older sediment from adjacent trawling grounds. In contrast, the trawled site was eroded and presented compacted century-old sediment highly depleted in OM components, which were between 20 % and 60 % lower than those in the untrawled site. However, the upper 2 cm of the trawled site consisted of recently accumulated sediments enriched in excess 234Th, excess 210Pb, and phytopigments, while OM contents were similar to those from the untrawled core. This fresh sediment supported protein turnover rates of 0.025 d−1, which doubled those quantified in surface sediments of the untrawled site. The enhancement of remineralization rates in surface sediment of the trawled site was associated with the arrival of fresh particles on a chronically trawled deep-sea region that is generally deprived of OM. We conclude that the detrimental effects of bottom trawling can be temporarily and partially abated by the arrival of fresh and nutritionally rich OM, which stimulate the response of benthic communities. However, these ephemeral deposits are likely to be swiftly eroded due to the high trawling frequency over fishing grounds, highlighting the importance of establishing science-based management strategies to mitigate the impacts of bottom trawling.

  • Open Access English
    Authors: 
    Lamas Fernández, Jesús; Leiro Vidal, José Manuel;
    Country: Spain
    Project: EC | ParaFishControl (634429)

    Funded European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634429) (PARAFISHCONTROL project) Assembled transcripts obtained from raw sequence reads after RNA-seq analysis of cultured P. dicentrarchi B1, C1 and I1 strains, obtained after RNAseq of cultured ciliates. Ciliates were isolated from experimentally infected turbot and cultured for three weeks in L-15 medium with 10% FCS at 18 oC. Then, ciliates were subjected to transcriptome analysis by using RNAseq

  • Open Access English
    Authors: 
    Lamas Fernández, Jesús; Leiro Vidal, José Manuel;
    Country: Spain
    Project: EC | ParaFishControl (634429)

    Funded by PARAFISHCONTROL project, European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634429 These files contain the annotated genes of P. dicentrarchi B1, I1 and C1 strains, obtained after RNAseq of cultured ciliates. Ciliates were isolated from experimentally infected turbot and cultured for three weeks in L-15 medium with 10% FCS at 18 oC. Then, ciliates were subjected to transcriptome analysis by using RNAseq

  • Open Access English
    Authors: 
    Racapé, Virginie; Zunino, Patricia; Mercier, Herlé; Lherminier, Pascale; Bopp, Laurent; Pérèz, Fiz F.; Gehlen, Marion;
    Project: EC | CARBOCHANGE (264879), EC | AtlantOS (633211)

    The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO–PISCES) at 1∕2∘ spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air–sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36∘ N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air–sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
27 Research products, page 1 of 3
  • Open Access English
    Authors: 
    Bennett, Scott; Alcovero, Teresa; Kletou, Demetris; Antoniou, Charalampos; Boada, Jordi; Buñuel, Xavier; Cucala, Lidia; Jorda, Gabriel; Kleitou, Periklis; Roca, Guillem; +4 more
    Publisher: Dryad
    Country: Spain
    Project: EC | DPaTh-To-Adapt (659246)

    [Methods] Experiment locations and climate Trans-Mediterranean translocation of Posidonia oceanica fragments took place between Catalunya (Spain), Mallorca (Spain) and Cyprus in July 2018 and were monitored until July 2019 (Fig. 1). Sea surface temperature data for each transplant site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst ) (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at the transplant sites in Catalunya, Mallorca and Cyprus and recorded hourly temperatures throughout the duration of the experiment (one year). In order to obtain an extended time series of temperature at transplant sites, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019. Local climate data was also compared to the global thermal distribution of P. oceanica to assess how representative experimental sites were of the thermal distribution of the species (Supplementary materials). Collectively, seawater temperatures from the three locations span the 16th - 99th percentile of temperatures observed across the global thermal distribution of P. oceanica. As such Catalunya, Mallorca and Cyprus are herein considered to represent the cool-edge, centre and warm-edge of P. oceanica distribution, respectively. Transplantation took place toward warmer climates and procedural controls were conducted within each source location, resulting in six source-to-recipient combinations (i.e. treatments, Fig. 1). Initial collection of P. oceanica, handling and transplantation was carried out simultaneously by coordinated teams in July 2018 (Table S1). Each recipient location was subsequently resampled four times over the course of the experiment, in August/September 2018 (T1), October 2018 (T2), April 2019 (T3) and May/June 2019 (T4, Table S1). Between 60-100 fragments were collected for each treatment. A fragment was defined as a section of P. oceanica containing one apical shoot connected with approximately five vertical shoots by approximately 10-15 cm of rhizome with intact roots. Collection occurred at two sites within each location, separated by approximately 1 km. Within sites, collections were conducted between 4 – 5 m depth and were spaced across the meadow to minimise the dominance of a single clone and damage to the meadow. Upon collection, fragments were transported for up to one hour back to the nearest laboratory in shaded seawater. Handling methods In the laboratory, fragments were placed into holding tanks with aerated seawater, at ambient temperature and a 14:10 light-dark cycle. All shoots were clipped to 25 cm length (from meristem to the tip of the longest leaves), to standardise initial conditions and reduce biomass for transportation. For transport by plane or ferry between locations, fragments were packed in layers within cool-boxes. Each layer was separated by frozen cool-packs wrapped in wet tea towels (rinsed in sea water). All fragments spent 12 hrs inside a cool-box irrespective of their recipient destination, including procedural controls (i.e. cool-cool, centre-centre and warm-warm) to simulate the transit times of the plants travelling furthest from their source location (Fig. 1a). On arrival at the destination, fragments were placed in holding tanks with aerated seawater at ambient temperature as described above in their recipient location for 48 hrs, prior to field transplantation. Measurement methods One day prior to transplantation, fragments were tagged with a unique number and attached to U-shaped peg with cable-ties. Morphological traits for each fragment were measured and included: 1) length of the longest apical leaf, width and number of leaves 2) total number of bite marks on leaves of three vertical shoots per fragment, 3) number of vertical shoots, 4) leaf count of three vertical shoots per fragment and 5) overall horizontal rhizome length. A subset (n=10) of fragments per treatment were marked prior transplantation to measure shoot growth. To do this, all shoots within a single fragment were pierced using a hypodermic needle. Two holes were pierced side-by-side at the base of the leaf/top of the meristem. Transplant methods All transplant sites were located in 4 – 5 m depth in area of open dead-matte, surrounded by P. oceanica meadow. In Mallorca and Cyprus, fragments were distributed between two sites, separated by approximately 1 km. In Catalunya, a lack of suitable dead matte habitat, meant that all fragments were placed in one site. Fragments were planted along parallel transects at 50 cm intervals and with a 50 cm gap between parallel transects (Fig. S1). Different treatments were mixed and deployed haphazardly along each transect. Resampling methods and herbivory On day 10 of the experiment, a severe herbivory event was recorded at both warm-edge translocation sites. Scaled photos of all fragments were taken at this time to record the effects of herbivory on transplants. At the end of each main sampling period (T0 – T1, T1-T2 and T3 – T4), all pierced fragments were collected and taken back to the laboratory to measure shoot growth. At T1, T2 and T3, additional sets of fragments (n = 10 per treatment) were marked using the piercing method to record growth in the subsequent time period. In addition, at T1 and T3, n = 20 shoots within the natural meadow at each site were marked to compare growth rates between the native meadow and transplants. Underwater shoot counts and a scaled photo was taken to record fragment survivorship, shoot mortality, bite marks, and shoot length among all remaining fragments within each site and sampling time. In the laboratory, morphological measurements (described above) were repeated on the collected fragments and growth of transplant and natural meadow shoots was measured. Growth (shoot elongation, cm d-1) of the marked shoots was obtained by measuring the length from the base of meristem to marked holes of each leaf (new growth) of the shoot and dividing the leaf elongation per shoot by the marking period (in days). For each shoot, total leaf length (cm shoot-1) and the number of new leaves was also recorded. The rate of new leaf production (new leaves shoot-1 d-1) was estimated dividing the number of new leaves produced per shoot and the marking period. New growth was dried at 60 ºC for 48 hrs to determine carbon and nitrogen content of the leaves, and carbon to nitrogen (C:N) ratios. Carbon and nitrogen concentrations in the new growth leaf tissue was measured at the beginning of the experiment and each subsequent time point for each treatment. Nutrient analyses were conducted at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan). Underwater photos of shoots were analysed using ImageJ software (https://imagej.net). Maximum leaf length on each shoot in warm-edge transplant sites (cool-warm, centre-warm and warm-warm) were recorded for the initial (day 10) herbivore impact, T1, T2 and T3 time-points and related to transplant nutrient concentrations. Herbivore impact was estimated as the proportional change in length of the longest leaf relative to initial length at T0. Thermal stress Long term maximum temperatures were recorded as the average of annual maximum daily temperatures in each transplant site, averaged between years from 1981-2019. Maximum thermal anomalies were calculated as the difference between daily temperatures in a recipient site over the course of the experiment and the long-term maximum temperature in the source site for each corresponding population. ‘Heat stress’ and ‘recovery’ growth periods of the experiment were defined as T0 -T2 (July-October) and T2-T4 (November-June), respectively, corresponding to periods of positive and negative maximum thermal anomalies. Thermal anomalies experienced by the different transplant treatments were plotted using the ‘geom_flame’, function in the ‘HeatwavesR’ package (Schlegel & Smit 2018) of R (version 3.6.1, 2019) . 1. The prevalence of local adaptation and phenotypic plasticity among populations is critical to accurately predicting when and where climate change impacts will occur. Currently, comparisons of thermal performance between populations are untested for most marine species or overlooked by models predicting the thermal sensitivity of species to extirpation. 2. Here we compared the ecological response and recovery of seagrass populations (Posidonia oceanica) to thermal stress throughout a year-long translocation experiment across a 2800 km gradient in ocean climate. Transplants in central and warm-edge locations experienced temperatures >29 ºC, representing thermal anomalies >5ºC above long-term maxima for cool-edge populations, 1.5ºC for central and <1ºC for warm-edge populations. 3. Cool, central and warm-edge populations differed in thermal performance when grown under common conditions, but patterns contrasted with expectations based on thermal geography. Cool-edge populations did not differ from warm-edge populations under common conditions and performed significantly better than central populations in growth and survival. 4. Our findings reveal that thermal performance does not necessarily reflect the thermal geography of a species. We demonstrate that warm-edge populations can be less sensitive to thermal stress than cooler, central populations suggesting that Mediterranean seagrasses have greater resilience to warming than current paradigms suggest. Australian Research Council, Award: DE200100900. Horizon 2020 Framework Programme, Award: 659246. Fundación BBVA. Peer reviewed

  • English
    Authors: 
    Waldron, Anthony; Adams, Vanessa; Allan, James; Arnell, Andy; Asner, Greg; Atkinson, Scott; Baccini, Alessandro; Bailie, Jonathan EM; Balmford, Andrew; Beau, J Austin; +103 more
    Publisher: Campaign for Nature
    Country: Austria
    Project: EC | BIGSEA (682602), EC | TRIATLAS (817578)

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework

  • Open Access English
    Authors: 
    Hopwood, Mark J.; Sanchez, Nicolas; Polyviou, Despo; Leiknes, Øystein; Gallego-Urrea, Julián Alberto; Achterberg, Eric P.; Ardelan, Murat V.; Aristegui, Javier; Bach, Lennart; Besiktepe, Sengul; +6 more
    Project: EC | OCEAN-CERTAIN (603773)

    The extracellular concentration of H2O2 in surface aquatic environments is controlled by a balance between photochemical production and the microbial synthesis of catalase and peroxidase enzymes to remove H2O2 from solution. In any kind of incubation experiment, the formation rates and equilibrium concentrations of reactive oxygen species (ROSs) such as H2O2 may be sensitive to both the experiment design, particularly to the regulation of incident light, and the abundance of different microbial groups, as both cellular H2O2 production and catalase–peroxidase enzyme production rates differ between species. Whilst there are extensive measurements of photochemical H2O2 formation rates and the distribution of H2O2 in the marine environment, it is poorly constrained how different microbial groups affect extracellular H2O2 concentrations, how comparable extracellular H2O2 concentrations within large-scale incubation experiments are to those observed in the surface-mixed layer, and to what extent a mismatch with environmentally relevant concentrations of ROS in incubations could influence biological processes differently to what would be observed in nature. Here we show that both experiment design and bacterial abundance consistently exert control on extracellular H2O2 concentrations across a range of incubation experiments in diverse marine environments. During four large-scale (>1000 L) mesocosm experiments (in Gran Canaria, the Mediterranean, Patagonia and Svalbard) most experimental factors appeared to exert only minor, or no, direct effect on H2O2 concentrations. For example, in three of four experiments where pH was manipulated to 0.4–0.5 below ambient pH, no significant change was evident in extracellular H2O2 concentrations relative to controls. An influence was sometimes inferred from zooplankton density, but not consistently between different incubation experiments, and no change in H2O2 was evident in controlled experiments using different densities of the copepod Calanus finmarchicus grazing on the diatom Skeletonema costatum (<1 % change in [H2O2] comparing copepod densities from 1 to 10 L−1). Instead, the changes in H2O2 concentration contrasting high- and low-zooplankton incubations appeared to arise from the resulting changes in bacterial activity. The correlation between bacterial abundance and extracellular H2O2 was stronger in some incubations than others (R2 range 0.09 to 0.55), yet high bacterial densities were consistently associated with low H2O2. Nonetheless, the main control on H2O2 concentrations during incubation experiments relative to those in ambient, unenclosed waters was the regulation of incident light. In an open (lidless) mesocosm experiment in Gran Canaria, H2O2 was persistently elevated (2–6-fold) above ambient concentrations; whereas using closed high-density polyethylene mesocosms in Crete, Svalbard and Patagonia H2O2 within incubations was always reduced (median 10 %–90 %) relative to ambient waters.

  • Open Access English
    Authors: 
    Hopwood, Mark J.; Santana-González, Carolina; Gallego-Urrea, Julian; Sanchez, Nicolas; Achterberg, Eric P.; Ardelan, Murat V.; Gledhill, Martha; González-Dávila, Melchor; Hoffmann, Linn; Leiknes, Øystein; +3 more
    Publisher: Copernicus Publications under license by EGU
    Project: EC | OCEAN-CERTAIN (603773)

    The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist almost exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II), the speciation of which is uncertain. Here we deploy flow injection analysis to measure in situ Fe(II) concentrations during a series of mesocosm/microcosm/multistressor experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During five mesocosm/microcosm/multistressor experiments in Svalbard and Patagonia, where dissolved (0.2 µm) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24 %–65 % of DFe, suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were less than calculated constants derived from ambient temperature, salinity, pH, and dissolved O2. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations <2 nM, suggesting that the effect may have arisen from organic Fe(II) ligands. This apparent enhancement of Fe(II) stability under post-bloom conditions and the existence of such a high fraction of DFe as Fe(II) challenge the assumption that DFe speciation in coastal seawater is dominated by ligand bound-Fe(III) species.

  • Open Access English
    Authors: 
    Allen, John T.; Munoz, Cristian; Gardiner, Jim; Reeve, Krissy A.; Alou-Font, Eva; Zarokanellos, Nikolaos;
    Project: EC | JERICO-NEXT (654410)

    Glider vehicles are now perhaps some of the most prolific providers of real-time and near-real-time operational oceanographic data. However, the data from these vehicles can and should be considered to have a long-term legacy value capable of playing a critical role in understanding and separating inter-annual, inter-decadal, and longterm global change. To achieve this, we have to go further than simply assuming the manufacturer’s calibrations, and field correct glider data in a more traditional way, for example, by careful comparison to water bottle calibrated lowered CTD datasets and/or “gold” standard recent climatologies. In this manuscript, we bring into the 21st century a historical technique that has been used manually by oceanographers for many years/decades for field correction/inter-calibration, thermal lag correction, and adjustment for biological fouling. The technique has now been made semi-automatic for machine processing of oceanographic glider data, although its future and indeed its origins have far wider scope. The subject of this manuscript is drawn from the original Description of Work (DoW) for a key task in the recently completed JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatories) EU-funded program, but goes on to consider future application and the suitability for integration with machine learning. Refereed 14.A Sea surface salinity Subsurface salinity TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) Manual (incl. handbook, guide, cookbook etc) Standard Operating Procedure 2019-12-03

  • Open Access English
    Authors: 
    Maffezzoli, Niccolò; Vallelonga, Paul; Edwards, Ross; Saiz-Lopez, Alfonso; Turetta, Clara; Kjær, Helle Astrid; Barbante, Carlo; Vinther, Bo; Spolaor, Andrea;
    Project: EC | CLIMAHAL (726349), EC | ICE2ICE (610055)

    Although it has been demonstrated that the speed and magnitude of the recent Arctic sea ice decline is unprecedented for the past 1450 years, few records are available to provide a paleoclimate context for Arctic sea ice extent. Bromine enrichment in ice cores has been suggested to indicate the extent of newly formed sea ice areas. Despite the similarities among sea ice indicators and ice core bromine enrichment records, uncertainties still exist regarding the quantitative linkages between bromine reactive chemistry and the first-year sea ice surfaces. Here we present a 120 000-year record of bromine enrichment from the RECAP (REnland ice CAP) ice core, coastal east Greenland, and interpret it as a record of first-year sea ice. We compare it to existing sea ice records from marine cores and tentatively reconstruct past sea ice conditions in the North Atlantic as far north as the Fram Strait (50–85∘ N). Our interpretation implies that during the last deglaciation, the transition from multi-year to first-year sea ice started at ∼17.5 ka, synchronously with sea ice reductions observed in the eastern Nordic Seas and with the increase in North Atlantic ocean temperature. First-year sea ice reached its maximum at 12.4–11.8 ka during the Younger Dryas, after which open-water conditions started to dominate, consistent with sea ice records from the eastern Nordic Seas and the North Icelandic shelf. Our results show that over the last 120 000 years, multi-year sea ice extent was greatest during Marine Isotope Stage (MIS) 2 and possibly during MIS 4, with more extended first-year sea ice during MIS 3 and MIS 5. Sea ice extent during the Holocene (MIS 1) has been less than at any time in the last 120 000 years.

  • Open Access English
    Authors: 
    Paradis, Sarah; Pusceddu, Antonio; Masqué, Pere; Puig, Pere; Moccia, Davide; Russo, Tommaso; Iacono, Claudio;
    Project: EC | EUROFLEETS2 (312762)

    Bottom trawling in the deep sea is one of the main drivers of sediment resuspension, eroding the seafloor and altering the content and composition of sedimentary organic matter (OM). The physical and biogeochemical impacts of bottom trawling were studied on the continental slope of the Gulf of Castellammare, Sicily (southwestern Mediterranean), through the analysis of two triplicate sediment cores collected at trawled and untrawled sites (∼550 m water depth) during the summer of 2016. Geochemical and sedimentological parameters (excess 210Pb, excess 234Th, 137Cs, dry bulk density, and grain size), elemental (organic carbon and nitrogen) and biochemical composition of sedimentary OM (proteins, carbohydrates, lipids), as well as its freshness (phytopigments) and degradation rates were determined in both coring locations. The untrawled site had a sedimentation rate of 0.15 cm yr−1 and presented a 6 cm thick surface mixed layer that contained siltier sediment with low excess 210Pb concentrations, possibly resulting from the resuspension, posterior advection, and eventual deposition of coarser and older sediment from adjacent trawling grounds. In contrast, the trawled site was eroded and presented compacted century-old sediment highly depleted in OM components, which were between 20 % and 60 % lower than those in the untrawled site. However, the upper 2 cm of the trawled site consisted of recently accumulated sediments enriched in excess 234Th, excess 210Pb, and phytopigments, while OM contents were similar to those from the untrawled core. This fresh sediment supported protein turnover rates of 0.025 d−1, which doubled those quantified in surface sediments of the untrawled site. The enhancement of remineralization rates in surface sediment of the trawled site was associated with the arrival of fresh particles on a chronically trawled deep-sea region that is generally deprived of OM. We conclude that the detrimental effects of bottom trawling can be temporarily and partially abated by the arrival of fresh and nutritionally rich OM, which stimulate the response of benthic communities. However, these ephemeral deposits are likely to be swiftly eroded due to the high trawling frequency over fishing grounds, highlighting the importance of establishing science-based management strategies to mitigate the impacts of bottom trawling.

  • Open Access English
    Authors: 
    Lamas Fernández, Jesús; Leiro Vidal, José Manuel;
    Country: Spain
    Project: EC | ParaFishControl (634429)

    Funded European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634429) (PARAFISHCONTROL project) Assembled transcripts obtained from raw sequence reads after RNA-seq analysis of cultured P. dicentrarchi B1, C1 and I1 strains, obtained after RNAseq of cultured ciliates. Ciliates were isolated from experimentally infected turbot and cultured for three weeks in L-15 medium with 10% FCS at 18 oC. Then, ciliates were subjected to transcriptome analysis by using RNAseq

  • Open Access English
    Authors: 
    Lamas Fernández, Jesús; Leiro Vidal, José Manuel;
    Country: Spain
    Project: EC | ParaFishControl (634429)

    Funded by PARAFISHCONTROL project, European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634429 These files contain the annotated genes of P. dicentrarchi B1, I1 and C1 strains, obtained after RNAseq of cultured ciliates. Ciliates were isolated from experimentally infected turbot and cultured for three weeks in L-15 medium with 10% FCS at 18 oC. Then, ciliates were subjected to transcriptome analysis by using RNAseq

  • Open Access English
    Authors: 
    Racapé, Virginie; Zunino, Patricia; Mercier, Herlé; Lherminier, Pascale; Bopp, Laurent; Pérèz, Fiz F.; Gehlen, Marion;
    Project: EC | CARBOCHANGE (264879), EC | AtlantOS (633211)

    The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO–PISCES) at 1∕2∘ spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air–sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36∘ N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air–sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC.