- home
- Advanced Search
Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Preprint , Article , Other literature type 2023 FranceInstitute of Mathematical Statistics ANR | T-REX, EC | XAIDAANR| T-REX ,EC| XAIDAAuthors: Juliette Legrand; Pierre Ailliot; Philippe Naveau; Nicolas Raillard;Juliette Legrand; Pierre Ailliot; Philippe Naveau; Nicolas Raillard;doi: 10.1214/23-aoas1766
The characterisation of future extreme wave events is crucial because of their multiple impacts, covering a broad range of topics such as coastal flood hazard, coastal erosion, reliability of offshore and coastal structures. The main goal of this paper is to propose and study a stochastic simulator that, given offshore conditions (peak direction Dp, peak period Tp and moderately high significant wave heights Hs), produces jointly offshore and coastal extreme Hs, a quantity measuring the wave severity and which represent a key feature in coastal risk analysis. For this purpose, we rely on bivariate Peaks over Threshold and a nonparametric simulation scheme of bivariate GPD is developed. From this joint simulator, a second generator is derived, allowing for conditional simulations of extreme Hs. Finally, to take into account nonstationarities, the extended generalised Pareto model is also adapted, letting the parameters vary with specific sea state parameters Tp and Dp. The performances of the two proposed generators are illustrated on simulated data and then applied to the simulation of new extreme oceanographic conditions close to the French Brittany coast using hindcast sea state data. Results show that the proposed algorithms successfully simulate future extreme Hs near the coast in a nonparametric way, jointly or conditionally on sea state parameters from a coarser model.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/23-aoas1766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/23-aoas1766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, France, SwedenElsevier BV Authors: Noemi Veraldi; Isabelle Dentand Quadri; Yohan van de Looij; Laura Malaguti Modernell; +12 AuthorsNoemi Veraldi; Isabelle Dentand Quadri; Yohan van de Looij; Laura Malaguti Modernell; Corinne Sinquin; Agata Zykwinska; Benjamin B. Tournier; Fabien Dalonneau; Honglian Li; Jin-Ping Li; Philippe Millet; Romain Vives; Sylvia Colliec-Jouault; Ariane de Agostini; Eduardo Farias Sanches; Stéphane V. Sizonenko;pmid: 37659814
Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.
Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023Data sources: Publikationer från Uppsala UniversitetArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2023.121214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023Data sources: Publikationer från Uppsala UniversitetArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2023.121214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, GermanyCopernicus GmbH EC | 4D_REEFEC| 4D_REEFXin Ren; Daniel J. Lunt; Erica Hendy; Anna von der Heydt; Ayako Abe-Ouchi; Bette Otto-Bliesner; Charles J. R. Williams; Christian Stepanek; Chuncheng Guo; Deepak Chandan; Gerrit Lohmann; Julia C. Tindall; Linda E. Sohl; Mark A. Chandler; Masa Kageyama; Michiel L. J. Baatsen; Ning Tan; Qiong Zhang; Ran Feng; Stephen Hunter; Wing-Le Chan; W. Richard Peltier; Xiangyu Li; Youichi Kamae; Zhongshi Zhang; Alan M. Haywood;The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
Climate of the Past ... arrow_drop_down Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-19-2053-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Climate of the Past ... arrow_drop_down Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-19-2053-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, FranceAmerican Geophysical Union (AGU) EC | COMFORT, EC | 4CEC| COMFORT ,EC| 4CTim DeVries; Kana Yamamoto; Rik Wanninkhof; Nicolas Gruber; Judith Hauck; Jens Daniel Müller; Laurent Bopp; Dustin Carroll; Brendan Carter; Thi‐Tuyet‐Trang Chau; Scott C. Doney; Marion Gehlen; Lucas Gloege; Luke Gregor; Stephanie Henson; Ji Hyun Kim; Yosuke Iida; Tatiana Ilyina; Peter Landschützer; Corinne Le Quéré; David Munro; Cara Nissen; Lavinia Patara; Fiz F. Pérez; Laure Resplandy; Keith B. Rodgers; Jörg Schwinger; Roland Séférian; Valentina Sicardi; Jens Terhaar; Joaquin Triñanes; Hiroyuki Tsujino; Andrew Watson; Sayaka Yasunaka; Jiye Zeng;handle: 20.500.11850/639025
This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO₂ flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr⁻¹ based on an ensemble of reconstructions of the history of sea surface pCO₂ (pCO₂ products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO₂, which is estimated at −2.1 ± 0.3 PgC yr⁻¹ by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr⁻¹ of terrestrially derived CO₂, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO₂ products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr⁻¹ decade⁻¹, while biogeochemical models and inverse models diagnose an anthropogenic CO₂-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr⁻¹ decade⁻¹, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO₂-forced variability by 2–3 times. These results suggest that anthropogenic CO₂ dominates the ocean CO₂ sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods. Global Biogeochemical Cycles, 37 (10) ISSN:1944-9224 ISSN:0886-6236
Global Biogeochemica... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Biogeochemica... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article , Preprint 2023 FranceCalifornia Digital Library (CDL) Authors: M. Daëron; W. R. Gray;M. Daëron; W. R. Gray;AbstractForaminiferal isotopes are widely used to study past oceans, with different species recording conditions at different depths. Their δ18O values record both seawater oxygen‐18 and temperature according to species‐specific fractionation factors, while their Δ47 signatures likely depend only on temperature. We describe an open‐source framework to collect/combine data relevant to foraminiferal isotopes, by constraining species‐specific oxygen‐18 fractionation factors (18α) based on culture experiments, stratified plankton tows or core‐top sediments; compiling stratified plankton tow constraints on living depths for planktic species; extracting seawater temperature, δ18O, and chemistry from existing databases for any latitude, longitude, and depth‐range; inferring calcification temperatures based on the above data. We find that although 18α differs between species, its temperature sensitivity remains indistinguishable from inorganic calcite. Based on > 2,600 observations we show that, although most planktic δ18O values are consistent with seawater temperature and δ18O over their expected living depths, a sizable minority (12%–24%) have heavier‐than‐predicted δ18O, best explained by calcification in deeper waters. We use this framework to revisit three recent Δ47 calibration studies of planktic/benthic foraminifera, confirming that planktic Δ47 varies systematically with oxygen‐18‐derived temperature estimates, even for samples whose δ18O disagrees with assumed climatological conditions, and demonstrating excellent agreement between planktic foraminifera and modern, largely inorganic Δ47 calibrations. Benthic foraminifera remain ambiguous: modern benthic Δ47 values appear offset from planktic ones, yet applying equilibrium Δ47 calibration to the Cenozoic benthic foraminifer record of Meckler et al. (2022, https://doi.org/10.1126/science.abk0604) largely reconciles it with δ18O‐derived temperatures, with discrete Δ47/δ18O discrepancies persisting in the Late Paleocene/Eocene/Plio‐Pleistocene.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x5j673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x5j673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Denmark, FranceWiley Subhadeep Chowdhury; Eric Raes; Cora Hörstmann; Ayaz Ahmed; Céline Ridame; Nicolas Metzl; P S Bhavya; Takuya Sato; Takuhei Shiozaki; Sophie Bonnet; Carolin R. Löscher; Arvind Singh; Mar Benavides;doi: 10.1002/lol2.10343
AbstractDinitrogen (N2) fixation provides the major source of reactive nitrogen in the open ocean, sustaining biological productivity. The Indian Ocean (IO) covers 22% of the ocean surface, while it only represents 1% of the global diazotroph database. Hence, constraining the sources of nitrogen in the IO is crucial. Here, we compile three decades of N2 fixation and diazotroph DNA data in the IO. Our analysis reveals basin‐scale yearly rates between ~ 7 and 13 Tg N yr−1. These rates are in the range of previous modeling‐based estimates but may represent a lower bound estimate due to the lack of data in this basin. Diazotroph variability among sub‐basins may suggest endemicity but needs to be taken with caution due to biased sampling toward certain seasons and uneven spatial coverage. We provide recommendations for a more accurate representation of the IO in the global nitrogen budget and our knowledge of diazotroph biogeography.
Limnology and Oceano... arrow_drop_down Limnology and Oceanography LettersArticle . 2023ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerHAL AMU; HAL-CEA; HAL-IRDArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lol2.10343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Limnology and Oceano... arrow_drop_down Limnology and Oceanography LettersArticle . 2023ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerHAL AMU; HAL-CEA; HAL-IRDArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lol2.10343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FranceSpringer Science and Business Media LLC J. Boutin; S. Yueh; R. Bindlish; S. Chan; D. Entekhabi; Y. Kerr; N. Kolodziejczyk; T. Lee; N. Reul; M. Zribi;AbstractThe monitoring of soil moisture and sea surface salinity over the Earth has been profoundly enhanced during the last thirteen years due to a new generation of satellite sensors. L-band radiometry is currently the only technology providing direct measurements of soil moisture, insensitive to surface roughness and distribution of elements in the soil, and the only technology the only technology for measuring that allows us to measure sea surface salinity from space. The Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite missions resolve global and local variability with a spatial resolution of approximately 43 km, a swath width close to 1000 km, and a sampling time, for each mission, of at least twice every 3 days. These resolutions and samplings can be increased by either merging data from the two sensors, and with complementary information gathered from other passive or active sensors, or with in situ information at higher spatial resolution. Numerous scientific studies based on the use of this new type of measurement have led to a better understanding and constraint of the processes governing the variability of the water cycle, ocean circulation and the Earth's climate. The continuity of measurements, and the increased spatial and radiometric resolution is critical for fulfilling scientific needs. Future L-band radiometry missions currently being planned in Europe (the Copernicus Imaging Microwave Radiometer), and in China (the Ocean Salinity mission) should provide better constraints on auxiliary parameters by combining multiple frequencies, but they will not have improved spatial resolution beyond SMOS and SMAP. The temporal continuity with SMOS and SMAP will likely not be ensured. In parallel, new concepts are being developed to increase spatial resolution of both land and ocean parameters.
Surveys in Geophysic... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-023-09798-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Surveys in Geophysic... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-023-09798-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 FranceCopernicus GmbH ANR | OCEANOMICSANR| OCEANOMICSAuthors: Saeed Hariri; Sabrina Speich; Bruno Blanke; Marina Lévy;Saeed Hariri; Sabrina Speich; Bruno Blanke; Marina Lévy;Abstract. We investigated the connectivity properties of an idealized western boundary current system separating two ocean gyres, where the flow is characterized by a well-defined mean circulation as well as energetic fine-scale features (i.e., mesoscale and submesoscale currents). We used a time-evolving 3D flow field from a high-resolution (HR-3D) ocean model of this system. In order to evaluate the role of the fine scales in connectivity estimates, we computed Lagrangian trajectories in three different ways: using the HR-3D flow, using the same flow but filtered on a coarse-resolution grid (CR-3D), and using the surface layer flow only (HR-SL). We examined connectivity between the two gyres along the western boundary current and across it by using and comparing different metrics, such as minimum and averaged values of transit time between 16 key sites, arrival depths, and probability density functions of transit times. We find that when the fine-scale flow is resolved, the numerical particles connect pairs of sites faster (between 100 to 300 d) than when it is absent. This is particularly true for sites that are along and near the jets separating the two gyres. Moreover, the connectivity is facilitated when 3D instead of surface currents are resolved. Finally, our results emphasize that ocean connectivity is 3D and not 2D and that assessing connectivity properties using climatologies or low-resolution velocity fields yields strongly biased estimates.
Ocean Science (OS) arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/os-19-1183-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ocean Science (OS) arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/os-19-1183-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 FranceFrontiers Media SA Lucie Bourreau; Etienne Pauthenet; Loïc Le Ster; Baptiste Picard; Esther Portela; Jean-Baptiste Sallée; Clive R. McMahon; Robert Harcourt; Mark Hindell; Christophe Guinet; Sophie Bestley; Jean-Benoît Charrassin; Alice DuVivier; Zephyr Sylvester; Kristen Krumhardt; Stéphanie Jenouvrier; Sara Labrousse;Antarctic coastal polynyas are persistent and recurrent regions of open water located between the coast and the drifting pack-ice. In spring, they are the first polar areas to be exposed to light, leading to the development of phytoplankton blooms, making polynyas potential ecological hotspots in sea-ice regions. Knowledge on polynya oceanography and ecology during winter is limited due to their inaccessibility. This study describes i) the first in situ chlorophyll fluorescence signal (a proxy for chlorophyll-a concentration and thus presence of phytoplankton) in polynyas between the end of summer and winter, ii) assesses whether the signal persists through time and iii) identifies its main oceanographic drivers. The dataset comprises 698 profiles of fluorescence, temperature and salinity recorded by southern elephant seals in 2011, 2019-2021 in the Cape-Darnley (CDP;67˚S-69˚E) and Shackleton (SP;66˚S-95˚E) polynyas between February and September. A significant fluorescence signal was observed until April in both polynyas. An additional signal occurring at 130m depth in August within CDP may result from in situ growth of phytoplankton due to potential adaptation to low irradiance or remnant chlorophyll-a that was advected into the polynya. The decrease and deepening of the fluorescence signal from February to August was accompanied by the deepening of the mixed layer depth and a cooling and salinification of the water column in both polynyas. Using Principal Component Analysis as an exploratory tool, we highlighted previously unsuspected drivers of the fluorescence signal within polynyas. CDP shows clear differences in biological and environmental conditions depending on topographic features with higher fluorescence in warmer and saltier waters on the shelf compared with the continental slope. In SP, near the ice-shelf, a significant fluorescence signal in April below the mixed layer (around 130m depth), was associated with fresher and warmer waters. We hypothesize that this signal could result from potential ice-shelf melting from warm water intrusions onto the shelf leading to iron supply necessary to fuel phytoplankton growth. This study supports that Antarctic coastal polynyas may have a key role for polar ecosystems as biologically active areas throughout the season within the sea-ice region despite inter and intra-polynya differences in environmental conditions.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerHAL-CEA; HAL-IRDArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1186403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerHAL-CEA; HAL-IRDArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1186403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FranceMDPI AG ANR | SOLABANR| SOLABKhassoum Correa; Eric Machu; Julien Brajard; Daouda Diouf; Saïdou Moustapha Sall; Hervé Demarcq;doi: 10.3390/rs15143613
WOS:001038809300001; International audience; The Sahara desert is a major global source of dust that is mostly transported southwest over the ocean off West Africa. The presence of this dust impacts the remote sensing of ocean surface properties. These aerosols have absorbing properties that are poorly accounted for in the standard ocean color data processing algorithm. This can result in an overestimation of the atmospheric contribution to the ocean color signal and consequently an underestimation of the oceanic contribution. A two-step algorithm initially applied to the Sea-viewing Wide field-of-view Sensor (SeaWiFS) data was adapted to the Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) sensor in the Northwest African region. The Northwest African region is a very productive region, where pelagic resources are an important socio-economic sector. Improving atmospheric correction of ocean color products is, thus, of particular interest for this oceanic region. The two-step approach of classifying the top-of-atmosphere radiance spectra for a better estimate of aerosol type on the one hand, and using an optimization method to fit the parameters of these aerosols and chlorophyll-a concentration (Chla) on the other hand, allows for a better representation of the optical thickness, a correction of the marine reflectance spectrum, and an increase in the spatio-temporal coverage of the area. To the extent that the properties of the water color signal are improved by this data processing, the Chla estimates should also be improved by this approach. However, it is difficult to conclude on this point from the available in situ observations.
Remote Sensing arrow_drop_down Remote SensingOther literature type . Article . 2023ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerHAL-CEA; HAL-IRDArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15143613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . Article . 2023ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of IfremerHAL-CEA; HAL-IRDArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15143613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Preprint , Article , Other literature type 2023 FranceInstitute of Mathematical Statistics ANR | T-REX, EC | XAIDAANR| T-REX ,EC| XAIDAAuthors: Juliette Legrand; Pierre Ailliot; Philippe Naveau; Nicolas Raillard;Juliette Legrand; Pierre Ailliot; Philippe Naveau; Nicolas Raillard;doi: 10.1214/23-aoas1766
The characterisation of future extreme wave events is crucial because of their multiple impacts, covering a broad range of topics such as coastal flood hazard, coastal erosion, reliability of offshore and coastal structures. The main goal of this paper is to propose and study a stochastic simulator that, given offshore conditions (peak direction Dp, peak period Tp and moderately high significant wave heights Hs), produces jointly offshore and coastal extreme Hs, a quantity measuring the wave severity and which represent a key feature in coastal risk analysis. For this purpose, we rely on bivariate Peaks over Threshold and a nonparametric simulation scheme of bivariate GPD is developed. From this joint simulator, a second generator is derived, allowing for conditional simulations of extreme Hs. Finally, to take into account nonstationarities, the extended generalised Pareto model is also adapted, letting the parameters vary with specific sea state parameters Tp and Dp. The performances of the two proposed generators are illustrated on simulated data and then applied to the simulation of new extreme oceanographic conditions close to the French Brittany coast using hindcast sea state data. Results show that the proposed algorithms successfully simulate future extreme Hs near the coast in a nonparametric way, jointly or conditionally on sea state parameters from a coarser model.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/23-aoas1766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/23-aoas1766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, France, SwedenElsevier BV Authors: Noemi Veraldi; Isabelle Dentand Quadri; Yohan van de Looij; Laura Malaguti Modernell; +12 AuthorsNoemi Veraldi; Isabelle Dentand Quadri; Yohan van de Looij; Laura Malaguti Modernell; Corinne Sinquin; Agata Zykwinska; Benjamin B. Tournier; Fabien Dalonneau; Honglian Li; Jin-Ping Li; Philippe Millet; Romain Vives; Sylvia Colliec-Jouault; Ariane de Agostini; Eduardo Farias Sanches; Stéphane V. Sizonenko;pmid: 37659814
Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.
Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023Data sources: Publikationer från Uppsala UniversitetArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2023.121214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023Data sources: Publikationer från Uppsala UniversitetArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2023.121214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, GermanyCopernicus GmbH EC | 4D_REEFEC| 4D_REEFXin Ren; Daniel J. Lunt; Erica Hendy; Anna von der Heydt; Ayako Abe-Ouchi; Bette Otto-Bliesner; Charles J. R. Williams; Christian Stepanek; Chuncheng Guo; Deepak Chandan; Gerrit Lohmann; Julia C. Tindall; Linda E. Sohl; Mark A. Chandler; Masa Kageyama; Michiel L. J. Baatsen; Ning Tan; Qiong Zhang; Ran Feng; Stephen Hunter; Wing-Le Chan; W. Richard Peltier; Xiangyu Li; Youichi Kamae; Zhongshi Zhang; Alan M. Haywood;The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, a