Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DRYAD; ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DRYAD; ZENODO
Dataset . 2020
License: CC 0
Data sources: Datacite; ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues

Authors: Alcinesio, Alessandro; Krishna Kumar, Ravinash; Monico, Carina; Cazimoglu, Idil; Bayley, Hagan; Meacock, Oliver J.; Allan, Rebecca G.; +2 Authors

Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues

Abstract

3D-printing networks of droplets connected by interface bilayers is a powerful platform to build synthetic tissues, in which functionality relies on precisely ordered structures. However, the structural precision and consistency in assembling these structures is currently limited, which restricts intricate designs and the complexity of functions performed by synthetic tissues. Here, we report that the equilibrium contact angle (θDIB) between a pair of droplets is a key parameter that dictates the tessellation and precise positioning of hundreds of picolitre droplets within 3D-printed, multi-layer networks. When θDIB approximates the geometrically-derived critical angle (θc) of 35.3º, the resulting networks of droplets arrange in regular hexagonally close-packed (hcp) lattices with the least fraction of defects. With this improved control over droplet packing, we can 3D-print functional synthetic tissues with single-droplet-wide conductive pathways. Our new insights into 3D droplet packing permit the fabrication of complex synthetic tissues, where precisely positioned compartments perform coordinated tasks.

The files are labelled in the format: SILXX_POPCYY_NetNumber_Process.tif Where: "SILXX_POPCYY" indicates the volume fraction of silicone oil (φSIL) and molar fraction of POPC (xPOPC) at which the network was printed (e.g. "SIL55_POPC13" corresponds to φSIL = 0.55 and xPOPC = 0.13) "NetNumber" indicates the repeat number of the specific printed network (e.g. "net3" indicates the 3rd network printed at a specific condition) "Process" indicates the type of processing visualised in the image. This can be: " " : Raw confocal image "Network": Segmented image showing automatic identification of the lipid bilayers in droplet networks "Network_Corrected": Manually corrected image after automatic segmentation "LinkClasses": Segmented image showing classification of lipid bilayers and lipid monolayers "Overlay": Overlay of the confocal image and corresponding packing classification based on Delaunay triangulation.

Keywords

Membrane biophysics, Nanopores, Tissues, Biomimetics, Bioinspired materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 23
    download downloads 7
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 23
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
23
7