search
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1

  • European Marine Science
  • TiPES
  • EU
  • Energy Research

Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Westerhold, Thomas;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | MIONIÑO (796220), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | TiPES (820970), EC | EARTHSEQUENCING (617462)

    Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.

  • Open Access English
    Authors: 
    Marwan, Norbert;
    Publisher: Zenodo
    Project: EC | MIONIÑO (796220), EC | EARTHSEQUENCING (617462), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | TiPES (820970)

    The data file `CENOGRID_Loess_20.txt` contains the astronomically tuned deep-sea benthic foraminifer carbon (������C) and oxygen (�������O) isotope reference records uniformly covering the entire Cenozoic. The first column is the tuned age in Ma, the second column the ������C, and the third column the �������O record. The original calculations were performed using the CRP Toolbox for MATLAB. In order to avoid installing the toolbox and for better performance, the functions for calculating RP and RQA were here reimplemented, providing identical result. To reproduce the RPs in Fig. 2, use the script `perform_rp.m`, for reproducing the determinism values and upper confidence bounds, use the script `perform_rqa.m`. {"references": ["T. Westerhold, N. Marwan, et al: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369(6509), 1383\u20131387 (2020)"]}

  • Open Access
    Authors: 
    Irene Malmierca-Vallet; Louise C. Sime; Paul J. Valdes; Julia Tindall;
    Publisher: Copernicus GmbH
    Country: United Kingdom
    Project: UKRI | NSFGEO-NERC Paleoclimate ... (NE/P009271/1), EC | TiPES (820970), UKRI | Retreat of Southern Hemis... (NE/P013279/1)

    Changes in the Greenland ice sheet (GIS) affect global sea level. Greenland stable water isotope (δ18O) records from ice cores offer information on past changes in the surface of the GIS. Here, we use the isotope-enabled Hadley Centre Coupled Model version 3 (HadCM3) climate model to simulate a set of last interglacial (LIG) idealised GIS surface elevation change scenarios focusing on GIS ice core sites. We investigate how δ18O depends on the magnitude and sign of GIS elevation change and evaluate how the response is altered by sea ice changes. We find that modifying GIS elevation induces changes in Northern Hemisphere atmospheric circulation, sea ice and precipitation patterns. These climate feedbacks lead to ice-core-averaged isotopic lapse rates of 0.49 ‰ (100 m)−1 for the lowered GIS states and 0.29 ‰ (100 m)−1 for the enlarged GIS states. This is lower than the spatially derived Greenland lapse rates of 0.62–0.72 ‰ (100 m)−1. These results thus suggest non-linearities in the isotope–elevation relationship and have consequences for the interpretation of past elevation and climate changes across Greenland. In particular, our results suggest that winter sea ice changes may significantly influence isotope–elevation gradients: winter sea ice effect can decrease (increase) modelled core-averaged isotopic lapse rate values by about −19 % (and +28 %) for the lowered (enlarged) GIS states, respectively. The largest influence of sea ice on δ18O changes is found in coastal regions like the Camp Century site.

  • Open Access English
    Authors: 
    Thomas Westerhold; Norbert Marwan; Anna Joy Drury; Diederik Liebrand; Claudia Agnini; Eleni Anagnostou; James S K Barnet; Steven M Bohaty; David De Vleeschouwer; Fabio Florindo; +14 more
    Publisher: NLM (Medline)
    Countries: Netherlands, United Kingdom, United States, United Kingdom, United Kingdom, Italy, Germany
    Project: EC | TiPES (820970), EC | EARTHSEQUENCING (617462), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | MIONIÑO (796220)

    Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

Powered by OpenAIRE graph
search
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1
  • Open Access English
    Authors: 
    Westerhold, Thomas;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | MIONIÑO (796220), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | TiPES (820970), EC | EARTHSEQUENCING (617462)

    Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.

  • Open Access English
    Authors: 
    Marwan, Norbert;
    Publisher: Zenodo
    Project: EC | MIONIÑO (796220), EC | EARTHSEQUENCING (617462), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | TiPES (820970)

    The data file `CENOGRID_Loess_20.txt` contains the astronomically tuned deep-sea benthic foraminifer carbon (������C) and oxygen (�������O) isotope reference records uniformly covering the entire Cenozoic. The first column is the tuned age in Ma, the second column the ������C, and the third column the �������O record. The original calculations were performed using the CRP Toolbox for MATLAB. In order to avoid installing the toolbox and for better performance, the functions for calculating RP and RQA were here reimplemented, providing identical result. To reproduce the RPs in Fig. 2, use the script `perform_rp.m`, for reproducing the determinism values and upper confidence bounds, use the script `perform_rqa.m`. {"references": ["T. Westerhold, N. Marwan, et al: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369(6509), 1383\u20131387 (2020)"]}

  • Open Access
    Authors: 
    Irene Malmierca-Vallet; Louise C. Sime; Paul J. Valdes; Julia Tindall;
    Publisher: Copernicus GmbH
    Country: United Kingdom
    Project: UKRI | NSFGEO-NERC Paleoclimate ... (NE/P009271/1), EC | TiPES (820970), UKRI | Retreat of Southern Hemis... (NE/P013279/1)

    Changes in the Greenland ice sheet (GIS) affect global sea level. Greenland stable water isotope (δ18O) records from ice cores offer information on past changes in the surface of the GIS. Here, we use the isotope-enabled Hadley Centre Coupled Model version 3 (HadCM3) climate model to simulate a set of last interglacial (LIG) idealised GIS surface elevation change scenarios focusing on GIS ice core sites. We investigate how δ18O depends on the magnitude and sign of GIS elevation change and evaluate how the response is altered by sea ice changes. We find that modifying GIS elevation induces changes in Northern Hemisphere atmospheric circulation, sea ice and precipitation patterns. These climate feedbacks lead to ice-core-averaged isotopic lapse rates of 0.49 ‰ (100 m)−1 for the lowered GIS states and 0.29 ‰ (100 m)−1 for the enlarged GIS states. This is lower than the spatially derived Greenland lapse rates of 0.62–0.72 ‰ (100 m)−1. These results thus suggest non-linearities in the isotope–elevation relationship and have consequences for the interpretation of past elevation and climate changes across Greenland. In particular, our results suggest that winter sea ice changes may significantly influence isotope–elevation gradients: winter sea ice effect can decrease (increase) modelled core-averaged isotopic lapse rate values by about −19 % (and +28 %) for the lowered (enlarged) GIS states, respectively. The largest influence of sea ice on δ18O changes is found in coastal regions like the Camp Century site.

  • Open Access English
    Authors: 
    Thomas Westerhold; Norbert Marwan; Anna Joy Drury; Diederik Liebrand; Claudia Agnini; Eleni Anagnostou; James S K Barnet; Steven M Bohaty; David De Vleeschouwer; Fabio Florindo; +14 more
    Publisher: NLM (Medline)
    Countries: Netherlands, United Kingdom, United States, United Kingdom, United Kingdom, Italy, Germany
    Project: EC | TiPES (820970), EC | EARTHSEQUENCING (617462), UKRI | Dynamics of the Oligocene... (NE/L007452/1), EC | MIONIÑO (796220)

    Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

Powered by OpenAIRE graph