search
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
14 Research products, page 1 of 2

  • European Marine Science
  • ICE2ICE
  • TiPES
  • EU

10
arrow_drop_down
Relevance
arrow_drop_down
  • Publication . Other literature type . Article . Preprint . 2021
    Open Access English
    Authors: 
    Helle Astrid Kjær; Lisa Lolk Hauge; Marius Folden Simonsen; Zurine Yoldi; Iben Koldtoft; Maria Hörhold; Johannes Freitag; Sepp Kipfstuhl; Anders Svensson; Paul Vallelonga;
    Country: Denmark
    Project: EC | ICE2ICE (610055), EC | TiPES (820970)

    Abstract. There are enormous costs involved in transporting snow and ice samples to home laboratories for “simple” analyses in order to constrain annual layer thicknesses and identify accumulation rates of specific sites. It is well known that depositional noise, incurred from factors such as wind drifts, seasonally biased deposition and melt layers can influence individual snow and firn records and that multiple cores are required to produce statistically robust time series. Thus, at many sites, core samples are measured in the field for densification, but the annual accumulation and the content of chemical impurities are often represented by just one core to reduce transport costs. We have developed a portable “lightweight in situ analysis” (LISA) box for ice, firn and snow analysis that is capable of constraining annual layers through the continuous flow analysis of meltwater conductivity and hydrogen peroxide under field conditions. The box can run using a small gasoline generator and weighs less than 50 kg. The LISA box was tested under field conditions at the East Greenland Ice-core Project (EastGRIP) deep ice core drilling site in northern Greenland. Analysis of the top 2 m of snow from seven sites in northern Greenland allowed the reconstruction of regional snow accumulation patterns for the 2015–2018 period (summer to summer).

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Hauge, Lisa Lolk; Simonsen, Marius; Yoldi, Zurine; Koldtoft, Iben; Hörhold, Maria; Freitag, Johannes; Kipfstuhl, Sepp; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | ICE2ICE (610055), EC | TiPES (820970)

    This is accumulation data is derived from the Light weight In Situ Analysis (LISA) box at the EastGRIP ice coring site in Greenland in summer 2019, by means of H2O2 summer peak identification and mean densities from 1 meter snow tubes.

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Hauge, Lisa Lolk; Simonsen, Marius; Yoldi, Zurine; Koldtoft, Iben; Hörhold, Maria; Freitag, Johannes; Kipfstuhl, Sepp; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | ICE2ICE (610055), EC | TiPES (820970)

    One and two metre snow pit accumulation, density, peroxide and conductivity on a depth and age scale from summer 2019 obtained at 7 ice core drilling sites; NEEM, B16, B19, B22 as well as 3 sites in the vicinity of EastGRIP representing the years 2014 to summer 2019. The data was analysed by means of continuous flow using the Light weight In Situ Analysis (LISA) box (Kjær et al, 2021).

  • Open Access English
    Authors: 
    Marius Folden Simonsen; Giovanni Baccolo; Thomas Blunier; Alejandra Borunda; Barbara Delmonte; Robert Frei; Steven L. Goldstein; Aslak Grinsted; Helle Astrid Kjær; Todd Sowers; +6 more
    Countries: Denmark, Italy
    Project: EC | ICE2ICE (610055), EC | TiPES (820970), NSF | Collaborative Research: I... (1443464)

    Accurate estimates of the past extent of the Greenland ice sheet provide critical constraints for ice sheet models used to determine Greenland’s response to climate forcing and contribution to global sea level. Here we use a continuous ice core dust record from the Renland ice cap on the east coast of Greenland to constrain the timing of changes to the ice sheet margin and relative sea level over the last glacial cycle. During the Holocene and the previous interglacial period (Eemian) the dust record was dominated by coarse particles consistent with rock samples from central East Greenland. From the coarse particle concentration record we infer the East Greenland ice sheet margin advanced from 113.4 ± 0.4 to 111.0 ± 0.4 ka BP during the glacial onset and retreated from 12.1 ± 0.1 to 9.0 ± 0.1 ka BP during the last deglaciation. These findings constrain the possible response of the Greenland ice sheet to climate forcings. Accurate measurements of the past extent of the Greenland ice sheet are crucial to understand its response to changing climate conditions. Here, the authors present a dust record from an ice core from the east coast of Greenland to provide detailed time constraints on ice sheet advance and retreat over the last interglacials.

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;
    Country: Denmark
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Abstract. Greenland ice cores provide information about past climate. Few impurity records covering the past 2 decades exist from Greenland. Here we present results from six firn cores obtained during a 426 km long northern Greenland traverse made in 2015 between the NEEM and the EGRIP deep-drilling stations situated on the western side and eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analyzed for chemical impurities and cover time spans of 18 to 53 years (±3 years) depending on local snow accumulation that decreases from west to east. The high temporal resolution allows for annual layers and seasons to be resolved. Insoluble dust, ammonium, and calcium concentrations in the six firn cores overlap, and the seasonal cycles are also similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations, H2O2 driven by the accumulation pattern, and conductivity likely influenced by sea salt. Overall, we determine a rather constant dust flux over the period, but in the data from recent years (1998–2015) we identify an increase in large dust particles that we ascribe to an activation of local Greenland sources. We observe an expected increase in acidity and conductivity in the mid-1970s as a result of anthropogenic emissions, followed by a decrease due to mitigation. Several volcanic horizons identified in the conductivity and acidity records can be associated with eruptions in Iceland and in the Barents Sea region. From a composite ammonium record we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R=0.49).

  • English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Results from six firn cores obtained during a 426 km long northern Greenland traverse in 2015 between the NEEM and the EGRIP deep drilling stations situated on the Western and Eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analysed for chemical impurities by means of Continuous Flow Analysis (CFA); Insoluble dust, ammonium, calcium, acid, conductivity and peroxide. The data was dated by means of annual layer counting of mainly peroxide supplemented by calcium seasonal cycles and spans 18 to 53 years (±3 yrs) depending on local snow accumulation that decreases from west to east. Insoluble dust, ammonium, and calcium concentrations in the 6 firn cores overlap, and also the seasonal cycles are similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations. H2O2 is driven by the accumulation pattern and conductivity is likely influenced by sea salt. Data is published as part of Kjær et al. 2022, Climate of the past, https://doi.org/10.5194/cp-2021-99

  • English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Results from six firn cores obtained during a 426 km long northern Greenland traverse in 2015 between the NEEM and the EGRIP deep drilling stations situated on the Western and Eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analysed for chemical impurities by means of Continuous Flow Analysis (CFA); Insoluble dust, ammonium, calcium, acid, conductivity and peroxide. The data was dated by means of annual layer counting of mainly peroxide supplemented by calcium seasonal cycles and spans 18 to 53 years (±3 yrs) depending on local snow accumulation that decreases from west to east. Insoluble dust, ammonium, and calcium concentrations in the 6 firn cores overlap, and also the seasonal cycles are similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations. H2O2 is driven by the accumulation pattern and conductivity is likely influenced by sea salt. Data is published as part of Kjær et al. 2022, Climate of the past, https://doi.org/10.5194/cp-2021-99

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Hauge, Lisa Lolk; Simonsen, Marius; Yoldi, Zurine; Koldtoft, Iben; Hörhold, Maria; Freitag, Johannes; Kipfstuhl, Sepp; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    This is accumulation data is derived from the Light weight In Situ Analysis (LISA) box at the EastGRIP ice coring site in Greenland in summer 2019, H2O2 is analysed by means of continuous flow analysis, but no standards were analysed for calibration and is thus represented as light counts in arbitrary units as described in Kaufmann et al., 2008; Röthlisberger et al., 2000. Conductivity is the electrical melt water conductivity as detected using a 3082 with micro flow cell 829 from Amber Science similarly to Bigler et al. 2011.

  • Open Access
    Authors: 
    Julien Westhoff; Giulia Sinnl; Anders Svensson; Johannes Freitag; Helle Astrid Kjær; Paul Vallelonga; Bo Vinther; Sepp Kipfstuhl; Dorthe Dahl-Jensen; Ilka Weikusat;
    Publisher: EGU Copernicus
    Countries: Denmark, Germany
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Abstract. We present a record of melt events obtained from the East Greenland Ice Core Project (EastGRIP) ice core in central northeastern Greenland, covering the largest part of the Holocene. The data were acquired visually using an optical dark-field line scanner. We detect and describe melt layers and lenses, seen as bubble-free layers and lenses, throughout the ice above the bubble–clathrate transition. This transition is located at 1150 m depth in the EastGRIP ice core, corresponding to an age of 9720 years b2k. We define the brittle zone in the EastGRIP ice core as that from 650 to 950 m depth, where we count on average more than three core breaks per meter. We analyze melt layer thicknesses, correct for ice thinning, and account for missing layers due to core breaks. Our record of melt events shows a large, distinct peak around 1014 years b2k (986 CE) and a broad peak around 7000 years b2k, corresponding to the Holocene Climatic Optimum. In total, we can identify approximately 831 mm of melt (corrected for thinning) over the past 10 000 years. We find that the melt event from 986 CE is most likely a large rain event similar to that from 2012 CE, and that these two events are unprecedented throughout the Holocene. We also compare the most recent 2500 years to a tree ring composite and find an overlap between melt events and tree ring anomalies indicating warm summers. Considering the ice dynamics of the EastGRIP site resulting from the flow of the Northeast Greenland Ice Stream (NEGIS), we find that summer temperatures must have been at least 3 ± 0.6 ∘C warmer during the Early Holocene compared to today.

  • Open Access
    Authors: 
    Cook, Eliza; Abbott, Peter M.; Pearce, Nick J.G.; Mojtabavi, Seyedhamidreza; Svensson, Anders; Bourne, Anna J.; Rasmussen, Sune O.; Seierstad, Inger K.; Vinther, Bo M.; Harrison, Joseph; +4 more
    Publisher: Elsevier BV
    Countries: Switzerland, United Kingdom, Denmark
    Project: EC | TiPES (820970), EC | ICE2ICE (610055), EC | THERA (820047), EC | TRACE (259253)

    Chemical profiles from Greenland ice cores show that the frequency of volcanism was higher during the last glacial-interglacial transition (LGIT) and early Holocene, (17–9 ka b2k) than in any other period during the last 110 kyr. This increased frequency has partly been linked to climate-driven melting of the Icelandic ice sheet during the last deglaciation, with regional isostatic changes thought to alter mantle viscosity and lead to more eruptions. Our study is the first to construct a comprehensive tephrochronological framework from Greenland ice cores over the LGIT to aid in the reconstruction of volcanic activity over this period. The framework is based on extensive high-resolution sampling of three Greenland ice cores between 17.4 and 11.6 ka b2k and comprises a total of 64 cryptotephra deposits from the NGRIP, GRIP and NEEM ice cores. We show that many of these tephras are preserved within the core without an associated chemical signature in the ice, which implies that reconstructions of volcanism based solely on glacio-chemical indicators might underestimate the number of events. Single glass shards from each deposit were geochemically characterised to trace the volcanic source and many of these deposits could be correlated between cores. We show that the 64 deposits represent tephra deposits from 42 separate volcanic events, and of these, 39 are from Iceland, two from the north Pacific region (Japan and USA) and one has an unknown source. Six deposits can be correlated to terrestrial and/or marine tephra deposits in the Northern Hemisphere and the remaining 36 are unreported in other archives. We did not locate tephra from the compositionally distinctive Laacher See eruption (∼13 ka b2k) in our records. Combining our new discoveries with the previously published tephra framework, raises the number of individual tephra horizons found in Greenland ice over this interval to 50. This significantly improves the regional tephrochronological framework, our knowledge of the eruptive history of Iceland during the LGIT and provides new tephra constraints over key LGIT climate events. Consequentially, this framework can guide sampling strategies of future tephra studies in the terrestrial and marine realms aiming to link these records to the Greenland ice cores to assess regional climate synchroneity.

search
Include:
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
14 Research products, page 1 of 2
  • Publication . Other literature type . Article . Preprint . 2021
    Open Access English
    Authors: 
    Helle Astrid Kjær; Lisa Lolk Hauge; Marius Folden Simonsen; Zurine Yoldi; Iben Koldtoft; Maria Hörhold; Johannes Freitag; Sepp Kipfstuhl; Anders Svensson; Paul Vallelonga;
    Country: Denmark
    Project: EC | ICE2ICE (610055), EC | TiPES (820970)

    Abstract. There are enormous costs involved in transporting snow and ice samples to home laboratories for “simple” analyses in order to constrain annual layer thicknesses and identify accumulation rates of specific sites. It is well known that depositional noise, incurred from factors such as wind drifts, seasonally biased deposition and melt layers can influence individual snow and firn records and that multiple cores are required to produce statistically robust time series. Thus, at many sites, core samples are measured in the field for densification, but the annual accumulation and the content of chemical impurities are often represented by just one core to reduce transport costs. We have developed a portable “lightweight in situ analysis” (LISA) box for ice, firn and snow analysis that is capable of constraining annual layers through the continuous flow analysis of meltwater conductivity and hydrogen peroxide under field conditions. The box can run using a small gasoline generator and weighs less than 50 kg. The LISA box was tested under field conditions at the East Greenland Ice-core Project (EastGRIP) deep ice core drilling site in northern Greenland. Analysis of the top 2 m of snow from seven sites in northern Greenland allowed the reconstruction of regional snow accumulation patterns for the 2015–2018 period (summer to summer).

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Hauge, Lisa Lolk; Simonsen, Marius; Yoldi, Zurine; Koldtoft, Iben; Hörhold, Maria; Freitag, Johannes; Kipfstuhl, Sepp; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | ICE2ICE (610055), EC | TiPES (820970)

    This is accumulation data is derived from the Light weight In Situ Analysis (LISA) box at the EastGRIP ice coring site in Greenland in summer 2019, by means of H2O2 summer peak identification and mean densities from 1 meter snow tubes.

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Hauge, Lisa Lolk; Simonsen, Marius; Yoldi, Zurine; Koldtoft, Iben; Hörhold, Maria; Freitag, Johannes; Kipfstuhl, Sepp; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | ICE2ICE (610055), EC | TiPES (820970)

    One and two metre snow pit accumulation, density, peroxide and conductivity on a depth and age scale from summer 2019 obtained at 7 ice core drilling sites; NEEM, B16, B19, B22 as well as 3 sites in the vicinity of EastGRIP representing the years 2014 to summer 2019. The data was analysed by means of continuous flow using the Light weight In Situ Analysis (LISA) box (Kjær et al, 2021).

  • Open Access English
    Authors: 
    Marius Folden Simonsen; Giovanni Baccolo; Thomas Blunier; Alejandra Borunda; Barbara Delmonte; Robert Frei; Steven L. Goldstein; Aslak Grinsted; Helle Astrid Kjær; Todd Sowers; +6 more
    Countries: Denmark, Italy
    Project: EC | ICE2ICE (610055), EC | TiPES (820970), NSF | Collaborative Research: I... (1443464)

    Accurate estimates of the past extent of the Greenland ice sheet provide critical constraints for ice sheet models used to determine Greenland’s response to climate forcing and contribution to global sea level. Here we use a continuous ice core dust record from the Renland ice cap on the east coast of Greenland to constrain the timing of changes to the ice sheet margin and relative sea level over the last glacial cycle. During the Holocene and the previous interglacial period (Eemian) the dust record was dominated by coarse particles consistent with rock samples from central East Greenland. From the coarse particle concentration record we infer the East Greenland ice sheet margin advanced from 113.4 ± 0.4 to 111.0 ± 0.4 ka BP during the glacial onset and retreated from 12.1 ± 0.1 to 9.0 ± 0.1 ka BP during the last deglaciation. These findings constrain the possible response of the Greenland ice sheet to climate forcings. Accurate measurements of the past extent of the Greenland ice sheet are crucial to understand its response to changing climate conditions. Here, the authors present a dust record from an ice core from the east coast of Greenland to provide detailed time constraints on ice sheet advance and retreat over the last interglacials.

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders; Vallelonga, Paul;
    Country: Denmark
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Abstract. Greenland ice cores provide information about past climate. Few impurity records covering the past 2 decades exist from Greenland. Here we present results from six firn cores obtained during a 426 km long northern Greenland traverse made in 2015 between the NEEM and the EGRIP deep-drilling stations situated on the western side and eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analyzed for chemical impurities and cover time spans of 18 to 53 years (±3 years) depending on local snow accumulation that decreases from west to east. The high temporal resolution allows for annual layers and seasons to be resolved. Insoluble dust, ammonium, and calcium concentrations in the six firn cores overlap, and the seasonal cycles are also similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations, H2O2 driven by the accumulation pattern, and conductivity likely influenced by sea salt. Overall, we determine a rather constant dust flux over the period, but in the data from recent years (1998–2015) we identify an increase in large dust particles that we ascribe to an activation of local Greenland sources. We observe an expected increase in acidity and conductivity in the mid-1970s as a result of anthropogenic emissions, followed by a decrease due to mitigation. Several volcanic horizons identified in the conductivity and acidity records can be associated with eruptions in Iceland and in the Barents Sea region. From a composite ammonium record we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R=0.49).

  • English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Results from six firn cores obtained during a 426 km long northern Greenland traverse in 2015 between the NEEM and the EGRIP deep drilling stations situated on the Western and Eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analysed for chemical impurities by means of Continuous Flow Analysis (CFA); Insoluble dust, ammonium, calcium, acid, conductivity and peroxide. The data was dated by means of annual layer counting of mainly peroxide supplemented by calcium seasonal cycles and spans 18 to 53 years (±3 yrs) depending on local snow accumulation that decreases from west to east. Insoluble dust, ammonium, and calcium concentrations in the 6 firn cores overlap, and also the seasonal cycles are similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations. H2O2 is driven by the accumulation pattern and conductivity is likely influenced by sea salt. Data is published as part of Kjær et al. 2022, Climate of the past, https://doi.org/10.5194/cp-2021-99

  • English
    Authors: 
    Kjær, Helle Astrid; Zens, Patrick; Black, Samuel; Lund, Kasper Holst; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Results from six firn cores obtained during a 426 km long northern Greenland traverse in 2015 between the NEEM and the EGRIP deep drilling stations situated on the Western and Eastern side of the Greenland ice sheet, respectively. The cores (9 to 14 m long) are analysed for chemical impurities by means of Continuous Flow Analysis (CFA); Insoluble dust, ammonium, calcium, acid, conductivity and peroxide. The data was dated by means of annual layer counting of mainly peroxide supplemented by calcium seasonal cycles and spans 18 to 53 years (±3 yrs) depending on local snow accumulation that decreases from west to east. Insoluble dust, ammonium, and calcium concentrations in the 6 firn cores overlap, and also the seasonal cycles are similar in timing and magnitude across sites, while peroxide (H2O2) and conductivity both have spatial variations. H2O2 is driven by the accumulation pattern and conductivity is likely influenced by sea salt. Data is published as part of Kjær et al. 2022, Climate of the past, https://doi.org/10.5194/cp-2021-99

  • Open Access English
    Authors: 
    Kjær, Helle Astrid; Hauge, Lisa Lolk; Simonsen, Marius; Yoldi, Zurine; Koldtoft, Iben; Hörhold, Maria; Freitag, Johannes; Kipfstuhl, Sepp; Svensson, Anders M; Vallelonga, Paul T;
    Publisher: PANGAEA
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    This is accumulation data is derived from the Light weight In Situ Analysis (LISA) box at the EastGRIP ice coring site in Greenland in summer 2019, H2O2 is analysed by means of continuous flow analysis, but no standards were analysed for calibration and is thus represented as light counts in arbitrary units as described in Kaufmann et al., 2008; Röthlisberger et al., 2000. Conductivity is the electrical melt water conductivity as detected using a 3082 with micro flow cell 829 from Amber Science similarly to Bigler et al. 2011.

  • Open Access
    Authors: 
    Julien Westhoff; Giulia Sinnl; Anders Svensson; Johannes Freitag; Helle Astrid Kjær; Paul Vallelonga; Bo Vinther; Sepp Kipfstuhl; Dorthe Dahl-Jensen; Ilka Weikusat;
    Publisher: EGU Copernicus
    Countries: Denmark, Germany
    Project: EC | TiPES (820970), EC | ICE2ICE (610055)

    Abstract. We present a record of melt events obtained from the East Greenland Ice Core Project (EastGRIP) ice core in central northeastern Greenland, covering the largest part of the Holocene. The data were acquired visually using an optical dark-field line scanner. We detect and describe melt layers and lenses, seen as bubble-free layers and lenses, throughout the ice above the bubble–clathrate transition. This transition is located at 1150 m depth in the EastGRIP ice core, corresponding to an age of 9720 years b2k. We define the brittle zone in the EastGRIP ice core as that from 650 to 950 m depth, where we count on average more than three core breaks per meter. We analyze melt layer thicknesses, correct for ice thinning, and account for missing layers due to core breaks. Our record of melt events shows a large, distinct peak around 1014 years b2k (986 CE) and a broad peak around 7000 years b2k, corresponding to the Holocene Climatic Optimum. In total, we can identify approximately 831 mm of melt (corrected for thinning) over the past 10 000 years. We find that the melt event from 986 CE is most likely a large rain event similar to that from 2012 CE, and that these two events are unprecedented throughout the Holocene. We also compare the most recent 2500 years to a tree ring composite and find an overlap between melt events and tree ring anomalies indicating warm summers. Considering the ice dynamics of the EastGRIP site resulting from the flow of the Northeast Greenland Ice Stream (NEGIS), we find that summer temperatures must have been at least 3 ± 0.6 ∘C warmer during the Early Holocene compared to today.

  • Open Access
    Authors: 
    Cook, Eliza; Abbott, Peter M.; Pearce, Nick J.G.; Mojtabavi, Seyedhamidreza; Svensson, Anders; Bourne, Anna J.; Rasmussen, Sune O.; Seierstad, Inger K.; Vinther, Bo M.; Harrison, Joseph; +4 more
    Publisher: Elsevier BV
    Countries: Switzerland, United Kingdom, Denmark
    Project: EC | TiPES (820970), EC | ICE2ICE (610055), EC | THERA (820047), EC | TRACE (259253)

    Chemical profiles from Greenland ice cores show that the frequency of volcanism was higher during the last glacial-interglacial transition (LGIT) and early Holocene, (17–9 ka b2k) than in any other period during the last 110 kyr. This increased frequency has partly been linked to climate-driven melting of the Icelandic ice sheet during the last deglaciation, with regional isostatic changes thought to alter mantle viscosity and lead to more eruptions. Our study is the first to construct a comprehensive tephrochronological framework from Greenland ice cores over the LGIT to aid in the reconstruction of volcanic activity over this period. The framework is based on extensive high-resolution sampling of three Greenland ice cores between 17.4 and 11.6 ka b2k and comprises a total of 64 cryptotephra deposits from the NGRIP, GRIP and NEEM ice cores. We show that many of these tephras are preserved within the core without an associated chemical signature in the ice, which implies that reconstructions of volcanism based solely on glacio-chemical indicators might underestimate the number of events. Single glass shards from each deposit were geochemically characterised to trace the volcanic source and many of these deposits could be correlated between cores. We show that the 64 deposits represent tephra deposits from 42 separate volcanic events, and of these, 39 are from Iceland, two from the north Pacific region (Japan and USA) and one has an unknown source. Six deposits can be correlated to terrestrial and/or marine tephra deposits in the Northern Hemisphere and the remaining 36 are unreported in other archives. We did not locate tephra from the compositionally distinctive Laacher See eruption (∼13 ka b2k) in our records. Combining our new discoveries with the previously published tephra framework, raises the number of individual tephra horizons found in Greenland ice over this interval to 50. This significantly improves the regional tephrochronological framework, our knowledge of the eruptive history of Iceland during the LGIT and provides new tephra constraints over key LGIT climate events. Consequentially, this framework can guide sampling strategies of future tephra studies in the terrestrial and marine realms aiming to link these records to the Greenland ice cores to assess regional climate synchroneity.