search
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.

  • European Marine Science
  • Closed Access
  • FR

Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mambrini, Muriel; Sanchez, Marie-Pierre; Chevassus, Bernard; Labbé, Laurent; +2 Authors

    Growth performance and feeding activities of brown trout selected for growth (S) and control lines (C) maintained without a selection pressure were compared. Groups of 500 fish of each line with the same initial weight (4 g) were constituted and fed for 115 days ad libitum using self-feeders or automatic feeders (2 lines×2 feeding methods×3 replicates). After 35 days of food deprivation, all groups were re-fed by self-feeders for 46 days. The feeding demands of groups fed by self-feeders were recorded continuously. Growth, feed intake and uneaten feed were measured at regular intervals. In both lines, growth rates were higher in self-fed than in automatically fed fish (P 0.36), the better growth of S was caused by higher feed intake. Self-fed brown trout ate 16–20% of their daily intake at dawn and on average 5% per h thereafter. This feeding activity profile was more discernible for S, which ate more than C at dawn (P<0.01). At the end of the starving period the loss of weight was slightly higher for S than for C (P<0.06). It was compensated during the re-feeding period for both lines by hyperphagia and higher feed efficiency. The mean final BW was approximately 90% higher for S than for C. Both lines restored rapidly their own feeding profiles. How this selection process may determine the features of the correlated responses is discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Livestock Production...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Livestock Production Science
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Livestock Production...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Livestock Production Science
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fangming Yang; Guisheng Song; Philippe Massicotte; Hao Wei; +1 Authors

    AbstractWater samples collected from various depths of the offshore South China and Philippine Seas were exposed to solar‐simulated radiation. Photomineralization of dissolved organic carbon (DOC) and photobleaching of chromophoric dissolved organic matter (CDOM) and its humic‐like fluorescent constituent (FDOM) were observed in all samples. Protein‐like FDOM was, however, either photo‐decomposed or photo‐produced, depending on the sample's depth. The photobleaching of CDOM and humic‐like FDOM was much faster in deep than in shallow water samples while photomineralization displayed a weaker vertical zonation. Prior‐irradiated deep water inoculated with surface‐water bacteria showed enhanced microbial DOC removal but CDOM production. Results from this study suggest that deep‐ocean CDOM and FDOM can barely survive photobleaching during one ocean mixing cycle, but photochemical turnover of the bio‐refractory deep DOC is considerably longer than its average radiocarbon age. Coupled photochemical‐microbial processes can not only remove part of the bio‐refractory deep DOM but also regenerate part of it during ocean overturning circulation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Geophysical Research Biogeosciences
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Geophysical Research Biogeosciences
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dolédec, Sylvain; Forcellini, Maxence; Olivier, Jean Michel; Roset, Nicolas;

    Summary Data‐rich restoration experiments offer opportunities to test the ability of bioassessment tools, such as those currently used to assess the ‘ecological status’ of waterbodies targeted by the European Water Framework Directive, to detect observed ecological changes. Minimum flow increases in four regulated reaches of the French Rhône River modified the invertebrate and fish communities in a predictable way, as detailed in other articles of this Special Issue. We tested the ability of several fish and macroinvertebrate metrics currently used in bioassessment to detect these changes. In addition, we considered changes in metrics that are expected to respond specifically to flow increase. These metrics were related to the habitat requirements of species, the ecological specialisation of communities and the abundance of macroinvertebrate functional groups (seen as surrogates for ecosystem attributes). For invertebrate communities, bioassessment metrics based on richness had equivocal responses to restoration and the Potamon‐Type Index demonstrated no or contradictory responses to restoration. The French biotic index was not sensitive to restoration and instead depicted spatial differences in biological quality. For fish communities, the French fish index was marginally sensitive in the reach with the largest minimum flow increase and some of its metrics were sensitive in other reaches. Contrasting with commonly used bioassessment indices and metrics, several metrics related to habitat requirements appropriately indicated the observed changes in community structure. Large flow changes increased the proportion of fish and macroinvertebrate individuals with preferences for midstream habitats, fast currents, deep waters and/or coarse substrates. However, these changes did not translate into the expected increase in ecological specialisation. In addition, functional metrics indicated that restoration led to higher proportions of grazers and higher availability of suspended food for filtering collectors, suggesting a return to the ecological conditions of a large river. The mixed and potentially contradictory responses of the different metrics confirm the difficulty of establishing benchmarks for ecological indicators in large‐regulated rivers and the need to design appropriate bioassessment metrics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Freshwater Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Freshwater Biology
    Article . 2015 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Freshwater Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Freshwater Biology
      Article . 2015 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Begovic, M; Copin-Montegut, C;

    Measurements of the partial pressure of CO, (pCO(2)) in surface waters, and other water properties were performed monthly during a 2-year period from February 1998 through February 2000, at a station in the open northwestern Mediterranean Sea (Dyfamed Station). On seasonal timescale, the pCO(2) minimum of 300 muatm in winter was followed by an increase of 120 muatm (pCO(2) reaching 420 muatm) related to warming of surface waters in summer. Estimates of the underlying processes (mixing, biological activity and air-sea gas exchange) governing the monthly variations of the upper layer PC02 were obtained from observed variations in total inorganic carbon content (TCO2) in the surface, and from the vertical distribution of physical parameters and TCO2, Monthly variations in TCO2 due to gas exchange were determined from wind speed and from the air-sea PC02 gradient. The impact of biological activity was estimated from the difference between the observed variations in TCO2 and the evaluations of air-sea exchange and carbon supply by physical processes. Mixing at the base of the mixed layer counteracts the late winter to summer TCO2 drawdown (about 80 mmol m(-3)) due to a net organic production of about 100 mmol m(-3). The carbon consumption continues until early summer despite the absence of nutrients in the upper layer from April or May. The net carbon production in the mixed layer during the warming period exceeds by a factor of 1.6 the carbon production deduced from nitrate fluxes and using the usual Redfield C:N ratio of 6.6:1. The TCO2 increase during the autumn is primarily associated with convective vertical mixing induced by upper layer cooling and deepening. On the other hand, the contribution of air-sea gas exchange to TCO2 variations remains relatively small aside from summer months, when the CO2 oversaturation is high and the mixed layer is only 15-20 m depth. (C) 2002 Elsevier Science Ltd. All rights reserved. International audience

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Deep Sea Research Pa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Deep Sea Research Part II Topical Studies in Oceanography
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2002
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Deep Sea Research Pa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Deep Sea Research Part II Topical Studies in Oceanography
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2002
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Barrat, Jean-Alix, J-A; Chaussidon, M.; Bohn, Marcel; Gillet, Philippe; +2 Authors

    Northwest Africa 479 (NWA 479) is a lunar meteorite recovered in 2000 from Morocco. This unbrecciated low-Ti basalt is paired with NWA 032. The texture of NWA 032/479 indicates a simple crystallization history and a fast cooling, followed by an impact event. The occurrence of high-pressure polymorphs of olivine (ringwoodite and wadsleyite) in shock-melt veins indicates shock-pressures of at least 20 GPa. Lithium abundances and isotopic compositions were measured by ion microprobe in pyroxene, olivine crystals, and magmatic inclusions. The δ7Li values in the magmatic inclusions indicate that the NWA 479 parental melt was enriched in 7Li (δ7Li = +15‰). The behavior of Li depicted by the phenocrysts is complex and is not controlled by their major element compositions. Li abundances and δ7Li values range respectively from 3.2 to 11.8 μg/g and +2.4 to +15.1‰ in olivine and from 2.8 to 18.4 μg/g and −0.2 to + 16.1‰ in pyroxene phenocrysts. Neither hot desert weathering, closed-system fractional crystallization, involvement of a low-δ7Li reservoir, degassing of NWA 479 parental melt, nor shock metamorphism correctly explain the Li distribution in the phenocrysts. We propose that the wide range of δ7Li values displayed by the phenocrysts results from the large diffusivity differences between 6Li and 7Li. It is shown that this difference is able to produce large isotopic heterogeneities in a very short time. International audience

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geochimica et Cosmoc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geochimica et Cosmochimica Acta
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geochimica et Cosmoc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geochimica et Cosmochimica Acta
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yona Silvy; Jean-Baptiste Sallée; Eric Guilyardi; Juliette Mignot; +1 Authors

    In response to increasing human emissions, the global ocean is continually warming. The spatial distribution of this warming can result from several mechanisms, difficult to disentangle in observations. Idealized modelling studies have successfully separated the contribution of additional heat passively entering the ocean, from the contribution of the changing circulation redistributing the pre-existing heat in response to perturbations in air-sea fluxes. However, the timescales of these different contributions have been largely unexplored so far. Here, we revisit this decomposition with a novel numerical framework to investigate the mechanisms driving regional ocean warming and its emergence from internal variability. Based on the IPSL-CM6A-LR coupled model and its large ensemble of transient climate change simulations, we extract both the internal fluctuations and the externally-forced signal in each component of the surface fluxes. With a stand-alone configuration of the ocean, we then test the response to perturbations applied on all surface fluxes together or individually. We find that the contribution of the different processes can largely vary in time, reinforcing or counteracting each other, causing the time of emergence of subsurface temperature changes to be advanced or delayed. Anthropogenic warming in the upper ocean water-masses is generally driven by the uptake of excess heat passively stored by the ocean circulation. Circulation changes have a minor role at the time when these signals emerge. On the contrary, in the deeper ocean, circulation changes are much more sensitive to surface forcings and play an important role in setting the timescales of ocean warming, through redistributive warming or cooling. International audience

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Climatearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Climate
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Climatearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Climate
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Poeplau, Christopher; Barré, Pierre; Cécillon, Lauric; Baudin, François; +1 Authors

    International audience; Soil warming can increase soil organic carbon (SOC) mineralization, triggering a positive climate-carbon cycle feedback loop. Globally, many soil warming experiments have examined losses of bulk SOC, but few have assessed changes in quality. Accurate knowledge of the latter is required for an in-depth understanding and improved prediction of SOC feedback to climate change. In this study, we used Rock-Eval thermal analysis (RE6) to characterize shifts in SOC thermal stability and bulk chemistry after six years of geothermal warming by 0.6 degrees C, 1.8 degrees C, 3.9 degrees C, 9.9 degrees C, 16.3 degrees C, 40 degrees C, and 80 degrees C in an Icelandic grassland topsoil (0-10 cm). We also used the strong warming-induced depletion of SOC (up to 92% in the 80 degrees C soil) in comparisons of chemical oxidation-resistant and biogeochemically resistant SOC, which are generally assumed to be similar in nature. Sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2) were used for oxidation. Warming-resistant SOC was strongly depleted in hydrocarbons and enriched in oxygen, confirming that SOC oxidation state, and thus energy content, is an important driver for biogeochemical stability. This was supported by findings that thermal stability, i.e., the amount of energy (temperature) necessary to pyrolyze or oxidize SOC, strongly increased with warming intensity. Of the 31 RE6 parameters tested, the most warming-sensitive were hydrogen index (HI, p = -0.84), oxygen index (OIRE6, rho = 0.83), proportion of total pyrolyzed carbon released as hydrocarbons at 200-650 degrees C (S2/PC, rho = -0.86), and the temperature at which a certain proportion of CO2 evolved during pyrolysis (rho > 0.8). Chemical oxidation of unwarmed soil caused average relative SOC losses of 61% (NaOCl) and 91% (H2O2) and shifts in RE6 properties that differed strongly from warming-induced shifts at comparable SOC losses. Chemical oxidation-resistant SOC was more enriched in oxygen, but slightly enriched in hydrocarbons, and less thermostable than comparable naturally depleted SOC at the same time. A certain overlap, especially for NaOCl-treated soils, is likely, while H2O2-oxidized soils showed very distinct RE6 properties. We concluded that i) soil warming leads to strong shifts in SOC bulk chemistry and thermal stability and ii) H2O2 should be avoided in isolation of a slow SOC kinetic pool.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geodermaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geoderma
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geodermaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geoderma
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marc Ohresser; Nathalie Morin; Martine Cerutti; Claude Delsert;

    Abstract Sequencing of the dnapol promoter region of Autographa californica nuclear polyhedrosis virus (AcNPV) revealed an overlapping open reading frame (ORF) in an antisense orientation, referred to as ORF-2. Analysis of the ORF-2 deduced amino-acid sequence revealed two short regions of homology with a similar ORF from Lymantria dispar nuclear polyhedrosis virus (LdNPV). Two 3′ processing signals of this gene, expressed late during infection, were shown to be located on the orf-2 stop codon and 162 nucleotides further downstream.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Gene
    Article . 1995 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Gene
    Article . 1995
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Gene
      Article . 1995 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Gene
      Article . 1995
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: K. F. Stec; Luigi Caputi; Pier Luigi Buttigieg; Domenico D'Alelio; +6 Authors

    International audience; Recent progress in applying meta-omics approaches to the study of marine ecosystems potentially allows scientists to study the genetic and functional diversity of plankton at an unprecedented depth and with enhanced precision. However, while a range of persistent technical issues still need to be resolved, a much greater obstacle currently preventing a complete and integrated view of the marine ecosystem is the absence of a clear conceptual framework. Herein, we discuss the knowledge that has thus far been derived from conceptual and statistical modelling of marine plankton ecosystems, and illustrate the potential power of integrated meta-omics approaches in the field. We then propose the use of a semantic framework is necessary to support integrative ecological modelling in the meta-omics era, particularly when having to face the increased interdisciplinarity needed to address global issues related to climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Genomicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Genomics
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Hal-Diderot
    Article . 2017
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Genomicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Genomics
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Hal-Diderot
      Article . 2017
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J, Cachot; Y, Cherel; F, Galgani; F, Vincent;

    A number of flounders dwelling in highly contaminated coastal areas of Northern Europe develop liver tumours. In order to increase our understanding of the molecular pathogenesis of these sporadic tumours, we examined p53 mutations in eleven hyperplasia and six adenoma. p53 introns 4 to 8 were first sequenced to allow individual amplification of exons 5 to 8. DNA extracted from formalin-fixed livers was amplified and PCR products were directly sequenced. Two major results were obtained. (i) Flounders from different geographical areas displayed a high rate of sequence variation. Base substitutions were identified in both tumour and normal tissues and thus may be considered as polymorphic variations in individuals. (ii) One mutation was detected in two hyperplastic foci from the same flounder. This mutation was a T:A to A:T transversion at codon 147, resulting in the replacement of valine for glutamic acid. This residue took place in the L2 loop of the DNA binding surface. Its substitution by an hydrophilic and charged residue could thus impair p53 (protein) biological activity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Ge...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Ge...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mutation Research/Genetic Toxicology and Environmental Mutagenesis
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to European Marine Science. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mambrini, Muriel; Sanchez, Marie-Pierre; Chevassus, Bernard; Labbé, Laurent; +2 Authors

    Growth performance and feeding activities of brown trout selected for growth (S) and control lines (C) maintained without a selection pressure were compared. Groups of 500 fish of each line with the same initial weight (4 g) were constituted and fed for 115 days ad libitum using self-feeders or automatic feeders (2 lines×2 feeding methods×3 replicates). After 35 days of food deprivation, all groups were re-fed by self-feeders for 46 days. The feeding demands of groups fed by self-feeders were recorded continuously. Growth, feed intake and uneaten feed were measured at regular intervals. In both lines, growth rates were higher in self-fed than in automatically fed fish (P 0.36), the better growth of S was caused by higher feed intake. Self-fed brown trout ate 16–20% of their daily intake at dawn and on average 5% per h thereafter. This feeding activity profile was more discernible for S, which ate more than C at dawn (P<0.01). At the end of the starving period the loss of weight was slightly higher for S than for C (P<0.06). It was compensated during the re-feeding period for both lines by hyperphagia and higher feed efficiency. The mean final BW was approximately 90% higher for S than for C. Both lines restored rapidly their own feeding profiles. How this selection process may determine the features of the correlated responses is discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Livestock Production...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Livestock Production Science
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Livestock Production...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Livestock Production Science
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fangming Yang; Guisheng Song; Philippe Massicotte; Hao Wei; +1 Authors

    AbstractWater samples collected from various depths of the offshore South China and Philippine Seas were exposed to solar‐simulated radiation. Photomineralization of dissolved organic carbon (DOC) and photobleaching of chromophoric dissolved organic matter (CDOM) and its humic‐like fluorescent constituent (FDOM) were observed in all samples. Protein‐like FDOM was, however, either photo‐decomposed or photo‐produced, depending on the sample's depth. The photobleaching of CDOM and humic‐like FDOM was much faster in deep than in shallow water samples while photomineralization displayed a weaker vertical zonation. Prior‐irradiated deep water inoculated with surface‐water bacteria showed enhanced microbial DOC removal but CDOM production. Results from this study suggest that deep‐ocean CDOM and FDOM can barely survive photobleaching during one ocean mixing cycle, but photochemical turnover of the bio‐refractory deep DOC is considerably longer than its average radiocarbon age. Coupled photochemical‐microbial processes can not only remove part of the bio‐refractory deep DOM but also regenerate part of it during ocean overturning circulation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Geophysical Research Biogeosciences
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Geophysical Research Biogeosciences
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dolédec, Sylvain; Forcellini, Maxence; Olivier, Jean Michel; Roset, Nicolas;

    Summary Data‐rich restoration experiments offer opportunities to test the ability of bioassessment tools, such as those currently used to assess the ‘ecological status’ of waterbodies targeted by the European Water Framework Directive, to detect observed ecological changes. Minimum flow increases in four regulated reaches of the French Rhône River modified the invertebrate and fish communities in a predictable way, as detailed in other articles of this Special Issue. We tested the ability of several fish and macroinvertebrate metrics currently used in bioassessment to detect these changes. In addition, we considered changes in metrics that are expected to respond specifically to flow increase. These metrics were related to the habitat requirements of species, the ecological specialisation of communities and the abundance of macroinvertebrate functional groups (seen as surrogates for ecosystem attributes). For invertebrate communities, bioassessment metrics based on richness had equivocal responses to restoration and the Potamon‐Type Index demonstrated no or contradictory responses to restoration. The French biotic index was not sensitive to restoration and instead depicted spatial differences in biological quality. For fish communities, the French fish index was marginally sensitive in the reach with the largest minimum flow increase and some of its metrics were sensitive in other reaches. Contrasting with commonly used bioassessment indices and metrics, several metrics related to habitat requirements appropriately indicated the observed changes in community structure. Large flow changes increased the proportion of fish and macroinvertebrate individuals with preferences for midstream habitats, fast currents, deep waters and/or coarse substrates. However, these changes did not translate into the expected increase in ecological specialisation. In addition, functional metrics indicated that restoration led to higher proportions of grazers and higher availability of suspended food for filtering collectors, suggesting a return to the ecological conditions of a large river. The mixed and potentially contradictory responses of the different metrics confirm the difficulty of establishing benchmarks for ecological indicators in large‐regulated rivers and the need to design appropriate bioassessment metrics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Freshwater Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Freshwater Biology
    Article . 2015 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Freshwater Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Freshwater Biology
      Article . 2015 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Begovic, M; Copin-Montegut, C;

    Measurements of the partial pressure of CO, (pCO(2)) in surface waters, and other water properties were performed monthly during a 2-year period from February 1998 through February 2000, at a station in the open northwestern Mediterranean Sea (Dyfamed Station). On seasonal timescale, the pCO(2) minimum of 300 muatm in winter was followed by an increase of 120 muatm (pCO(2) reaching 420 muatm) related to warming of surface waters in summer. Estimates of the underlying processes (mixing, biological activity and air-sea gas exchange) governing the monthly variations of the upper layer PC02 were obtained from observed variations in total inorganic carbon content (TCO2) in the surface, and from the vertical distribution of physical parameters and TCO2, Monthly variations in TCO2 due to gas exchange were determined from wind speed and from the air-sea PC02 gradient. The impact of biological activity was estimated from the difference between the observed variations in TCO2 and the evaluations of air-sea exchange and carbon supply by physical processes. Mixing at the base of the mixed layer counteracts the late winter to summer TCO2 drawdown (about 80 mmol m(-3)) due to a net organic production of about 100 mmol m(-3). The carbon consumption continues until early summer despite the absence of nutrients in the upper layer from April or May. The net carbon production in the mixed layer during the warming period exceeds by a factor of 1.6 the carbon production deduced from nitrate fluxes and using the usual Redfield C:N ratio of 6.6:1. The TCO2 increase during the autumn is primarily associated with convective vertical mixing induced by upper layer cooling and deepening. On the other hand, the contribution of air-sea gas exchange to TCO2 variations remains relatively small aside from summer months, when the CO2 oversaturation is high and the mixed layer is only 15-20 m depth. (C) 2002 Elsevier Science Ltd. All rights reserved. International audience

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Deep Sea Research Pa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Deep Sea Research Part II Topical Studies in Oceanography
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2002
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Deep Sea Research Pa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Deep Sea Research Part II Topical Studies in Oceanography
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2002
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Barrat, Jean-Alix, J-A; Chaussidon, M.; Bohn, Marcel; Gillet, Philippe; +2 Authors

    Northwest Africa 479 (NWA 479) is a lunar meteorite recovered in 2000 from Morocco. This unbrecciated low-Ti basalt is paired with NWA 032. The texture of NWA 032/479 indicates a simple crystallization history and a fast cooling, followed by an impact event. The occurrence of high-pressure polymorphs of olivine (ringwoodite and wadsleyite) in shock-melt veins indicates shock-pressures of at least 20 GPa. Lithium abundances and isotopic compositions were measured by ion microprobe in pyroxene, olivine crystals, and magmatic inclusions. The δ7Li values in the magmatic inclusions indicate that the NWA 479 parental melt was enriched in 7Li (δ7Li = +15‰). The behavior of Li depicted by the phenocrysts is complex and is not controlled by their major element compositions. Li abundances and δ7Li values range respectively from 3.2 to 11.8 μg/g and +2.4 to +15.1‰ in olivine and from 2.8 to 18.4 μg/g and −0.2 to + 16.1‰ in pyroxene phenocrysts. Neither hot desert weathering, closed-system fractional crystallization, involvement of a low-δ7Li reservoir, degassing of NWA 479 parental melt, nor shock metamorphism correctly explain the Li distribution in the phenocrysts. We propose that the wide range of δ7Li values displayed by the phenocrysts results from the large diffusivity differences between 6Li and 7Li. It is shown that this difference is able to produce large isotopic heterogeneities in a very short time. International audience

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geochimica et Cosmoc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geochimica et Cosmochimica Acta
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geochimica et Cosmoc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geochimica et Cosmochimica Acta
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yona Silvy; Jean-Baptiste Sallée; Eric Guilyardi; Juliette Mignot; +1 Authors

    In response to increasing human emissions, the global ocean is continually warming. The spatial distribution of this warming can result from several mechanisms, difficult to disentangle in observations. Idealized modelling studies have successfully separated the contribution of additional heat passively entering the ocean, from the contribution of the changing circulation redistributing the pre-existing heat in response to perturbations in air-sea fluxes. However, the timescales of these different contributions have been largely unexplored so far. Here, we revisit this decomposition with a novel numerical framework to investigate the mechanisms driving regional ocean warming and its emergence from internal variability. Based on the IPSL-CM6A-LR coupled model and its large ensemble of transient climate change simulations, we extract both the internal fluctuations and the externally-forced signal in each component of the surface fluxes. With a stand-alone configuration of the ocean, we then test the response to perturbations applied on all surface fluxes together or individually. We find that the contribution of the different processes can largely vary in time, reinforcing or counteracting each other, causing the time of emergence of subsurface temperature changes to be advanced or delayed. Anthropogenic warming in the upper ocean water-masses is generally driven by the uptake of excess heat passively stored by the ocean circulation. Circulation changes have a minor role at the time when these signals emerge. On the contrary, in the deeper ocean, circulation changes are much more sensitive to surface forcings and play an important role in setting the timescales of ocean warming, through redistributive warming or cooling. International audience

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Climatearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Climate
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Climatearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Climate
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Poeplau, Christopher; Barré, Pierre; Cécillon, Lauric; Baudin, François; +1 Authors

    International audience; Soil warming can increase soil organic carbon (SOC) mineralization, triggering a positive climate-carbon cycle feedback loop. Globally, many soil warming experiments have examined losses of bulk SOC, but few have assessed changes in quality. Accurate knowledge of the latter is required for an in-depth understanding and improved prediction of SOC feedback to climate change. In this study, we used Rock-Eval thermal analysis (RE6) to characterize shifts in SOC thermal stability and bulk chemistry after six years of geothermal warming by 0.6 degrees C, 1.8 degrees C, 3.9 degrees C, 9.9 degrees C, 16.3 degrees C, 40 degrees C, and 80 degrees C in an Icelandic grassland topsoil (0-10 cm). We also used the strong warming-induced depletion of SOC (up to 92% in the 80 degrees C soil) in comparisons of chemical oxidation-resistant and biogeochemically resistant SOC, which are generally assumed to be similar in nature. Sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2) were used for oxidation. Warming-resistant SOC was strongly depleted in hydrocarbons and enriched in oxygen, confirming that SOC oxidation state, and thus energy content, is an important driver for biogeochemical stability. This was supported by findings that thermal stability, i.e., the amount of energy (temperature) necessary to pyrolyze or oxidize SOC, strongly increased with warming intensity. Of the 31 RE6 parameters tested, the most warming-sensitive were hydrogen index (HI, p = -0.84), oxygen index (OIRE6, rho = 0.83), proportion of total pyrolyzed carbon released as hydrocarbons at 200-650 degrees C (S2/PC, rho = -0.86), and the temperature at which a certain proportion of CO2 evolved during pyrolysis (rho > 0.8). Chemical oxidation of unwarmed soil caused average relative SOC losses of 61% (NaOCl) and 91% (H2O2) and shifts in RE6 properties that differed strongly from warming-induced shifts at comparable SOC losses. Chemical oxidation-resistant SOC was more enriched in oxygen, but slightly enriched in hydrocarbons, and less thermostable than comparable naturally depleted SOC at the same time. A certain overlap, especially for NaOCl-treated soils, is likely, while H2O2-oxidized soils showed very distinct RE6 properties. We concluded that i) soil warming leads to strong shifts in SOC bulk chemistry and thermal stability and ii) H2O2 should be avoided in isolation of a slow SOC kinetic pool.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geodermaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geoderma
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geodermaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geoderma
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marc Ohresser; Nathalie Morin; Martine Cerutti; Claude Delsert;

    Abstract Sequencing of the dnapol promoter region of Autographa californica nuclear polyhedrosis virus (AcNPV) revealed an overlapping open reading frame (ORF) in an antisense orientation, referred to as ORF-2. Analysis of the ORF-2 deduced amino-acid sequence revealed two short regions of homology with a similar ORF from Lymantria dispar nuclear polyhedrosis virus (LdNPV). Two 3′ processing signals of this gene, expressed late during infection, were shown to be located on the orf-2 stop codon and 162 nucleotides further downstream.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Gene
    Article . 1995 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Gene
    Article . 1995
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Gene
      Article . 1995 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Gene
      Article . 1995
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: K. F. Stec; Luigi Caputi; Pier Luigi Buttigieg; Domenico D'Alelio; +6 Authors

    International audience; Recent progress in applying meta-omics approaches to the study of marine ecosystems potentially allows scientists to study the genetic and functional diversity of plankton at an unprecedented depth and with enhanced precision. However, while a range of persistent technical issues still need to be resolved, a much greater obstacle currently preventing a complete and integrated view of the marine ecosystem is the absence of a clear conceptual framework. Herein, we discuss the knowledge that has thus far been derived from conceptual and statistical modelling of marine plankton ecosystems, and illustrate the potential power of integrated meta-omics approaches in the field. We then propose the use of a semantic framework is necessary to support integrative ecological modelling in the meta-omics era, particularly when having to face the increased interdisciplinarity needed to address global issues related to climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Genomicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Genomics
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Hal-Diderot
    Article . 2017
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Genomicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Genomics
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Hal-Diderot
      Article . 2017
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J, Cachot; Y, Cherel; F, Galgani; F, Vincent;

    A number of flounders dwelling in highly contaminated coastal areas of Northern Europe develop liver tumours. In order to increase our understanding of the molecular pathogenesis of these sporadic tumours, we examined p53 mutations in eleven hyperplasia and six adenoma. p53 introns 4 to 8 were first sequenced to allow individual amplification of exons 5 to 8. DNA extracted from formalin-fixed livers was amplified and PCR products were directly sequenced. Two major results were obtained. (i) Flounders from different geographical areas displayed a high rate of sequence variation. Base substitutions were identified in both tumour and normal tissues and thus may be considered as polymorphic variations in individuals. (ii) One mutation was detected in two hyperplastic foci from the same flounder. This mutation was a T:A to A:T transversion at codon 147, resulting in the replacement of valine for glutamic acid. This residue took place in the L2 loop of the DNA binding surface. Its substitution by an hydrophilic and charged residue could thus impair p53 (protein) biological activity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Ge...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Ge...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mutation Research/Genetic Toxicology and Environmental Mutagenesis
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.