- home
- Search
Loading
description Publicationkeyboard_double_arrow_right Article 2011 Netherlands, Netherlands, Finland, NetherlandsPublic Library of Science (PLoS) Authors: Matti Kummu; Hans de Moel; Philip J. Ward; Olli Varis;Matti Kummu; Hans de Moel; Philip J. Ward; Olli Varis;VK: T20702 Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water. Peer reviewed
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0020578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0020578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint , Article 2022 Netherlands, Denmark, Netherlands, Netherlands, GermanyCopernicus GmbH ANR | RESTORE, EC | NunataryukANR| RESTORE ,EC| NunataryukMartine Lizotte; Bennet Juhls; Atsushi Matsuoka; Philippe Massicotte; Gaëlle Mével; David Obie James Anikina; Sofia Antonova; Guislain Bécu; Marine Béguin; Simon Bélanger; Thomas Bossé-Demers; Lisa Bröder; Flavienne Bruyant; Gwénaëlle Chaillou; Jérôme Comte; Raoul-Marie Couture; Emmanuel Devred; Gabrièle Deslongchamps; Thibaud Dezutter; Miles Dillon; David Doxaran; Aude Flamand; Frank Fell; Joannie Ferland; Marie-Hélène Forget; Michael Fritz; Thomas J. Gordon; Caroline Guilmette; Andrea Hilborn; Rachel Hussherr; Charlotte Irish; Fabien Joux; Lauren Kipp; Audrey Laberge-Carignan; Hugues Lantuit; Edouard Leymarie; Antonio Mannino; Juliette Maury; Paul Overduin; Laurent Oziel; Colin Stedmon; Crystal Thomas; Lucas Tisserand; Jean-Éric Tremblay; Jorien Vonk; Dustin Whalen; Marcel Babin;Climate warming and related drivers of soil thermal change in the Arctic are expected to modify the distribution and dynamics of carbon contained in perennially frozen grounds. Thawing of permafrost in the Mackenzie Delta region of northwestern Canada, coupled with increases in river discharge and coastal erosion, trigger the release of terrestrial organic matter (OMt) from the largest Arctic drainage basin in North America into the Arctic Ocean. While this process is ongoing, well-established, and its rate is accelerating, the fate of the newly-mobilized organic matter, as it transits from the watershed through the delta and into the marine system, remains poorly understood. In the framework of the European Horizon 2020 Nunataryuk programme, and as part of the Work Package 4 (WP4) Coastal Waters theme, four field expeditions were conducted in the Mackenzie Delta region and southern Beaufort Sea from April to September 2019. The temporal sampling design allowed the survey of ambient conditions in the coastal waters under full ice cover prior to the spring freshet, during ice break-up in summer, as well as anterior to the freeze-up period in fall. To capture the fluvial-marine transition zone, and with distinct challenges related to shallow waters and changing seasonal and meteorological conditions, the field sampling was conducted in close partnership with members of the communities of Aklavik, Inuvik and Tuktoyaktuk, using several platforms: helicopters, snowmobiles and small boats. Water column profiles of physical and optical variables were measured in situ, while surface water, groundwater and sediment samples were collected and preserved for the determination of the composition and sources of OMt, including particulate and dissolved organic carbon (POC, DOC), and chromophoric dissolved organic matter (CDOM), as well as a suite of physical, chemical and biological variables. Here we present an overview of the standardized datasets, including hydrographic profiles, remote sensing reflectance, temperature and salinity, particle absorption, nutrients, dissolved organic carbon, particulate organic carbon, particulate organic nitrogen, colored dissolved organic matter absorption, fluorescent dissolved organic matter intensity, suspended particulate matter, total particulate carbon, total particulate nitrogen, stable water isotopes, radon in water, bacterial abundance, and a string of phytoplankton pigments including total chlorophyll. Datasets and related metadata can be found in Juhls et al. 2021. https://doi.pangaea.de/10.1594/PANGAEA.937587.
Earth System Science... arrow_drop_down Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information CenterOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2022-163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Earth System Science... arrow_drop_down Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information CenterOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2022-163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Wiley FWF | Agricultural intensificat..., EC | APHIWEBFWF| Agricultural intensification and aphid-parasitoid foodwebs ,EC| APHIWEBZhengpei Ye; Ines M.G. Vollhardt; Nadia Parth; Oskar Rennstam Rubbmark; Michael Traugott;Abstract Facultative bacterial endosymbionts can protect their aphid hosts from natural enemies such as hymenopteran parasitoids. As such, they have the capability to modulate interactions between aphids, parasitoids and hyperparasitoids. However, the magnitude of these effects in natural aphid populations and their associated parasitoid communities is currently unknown. Moreover, environmental factors such as plant fertilization and landscape complexity are known to affect aphid–parasitoid interactions but it remains unclear how such environmental factors affect the interplay between aphids, parasitoids and endosymbionts. Here, we tested whether facultative endosymbionts confer protection to parasitoids in natural populations of the English grain aphid, Sitobion avenae, and if this is affected by plant fertilization and landscape complexity. Furthermore, we examined whether the effects of facultative endosymbionts can cascade up to the hyperparasitoid level and increase primary‐hyperparasitoid food web specialization. Living aphids and mummies were collected in fertilized and unfertilized plots within 13 wheat fields in Central Germany. We assessed the occurrence of primary parasitoid, hyperparasitoid and endosymbiont species in aphids and mummies using a newly established molecular approach. Facultative endosymbiont infection rates were high across fields (~80%), independent of whether aphids were parasitized or unparasitized. Aphid mummies exhibited a significantly lower share of facultative endosymbiont infection (~38%). These findings suggest that facultative endosymbionts do not affect parasitoid oviposition behaviour, but decrease parasitoid survival in the host. Facultative endosymbiont infection rates were lower in mummies collected from fertilized compared to unfertilized plants, indicating that plant fertilization boosts the facultative endosymbiont protective effect. Furthermore, we found strong evidence for species‐specific and negative cascading effects of facultative endosymbionts on primary and hyperparasitoids, respectively. Facultative endosymbionts impacted parasitoid assemblages and increased the specialization of primary‐hyperparasitoid food webs: these effects were independent from and much stronger than other environmental factors. The current findings strongly suggest that facultative endosymbionts act as a driving force in aphid–parasitoid–hyperparasitoid networks: they shape insect community composition at different trophic levels and modulate, directly and indirectly, the interactions between aphids, parasitoids and their environment.
Europe PubMed Centra... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Europe PubMed Centra... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2018figshare TARA | Tara OceansTARA| Tara OceansM. Tangherlini; M. Miralto; C. Colantuono; M. Sangiovanni; A. Dell’ Anno; C. Corinaldesi; R. Danovaro; M. Chiusano;Table summarizing the resulting contigs obtained from the Tara miTAGs assembly. (DOCX 33 kb)
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7404815.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7404815.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2015 United Kingdom, United Kingdom, GermanyCopernicus GmbH UKRI | Southampton-2011-DTG-Fund..., UKRI | Ocean Acidification Impac...UKRI| Southampton-2011-DTG-Funding 8 Studentships ,UKRI| Ocean Acidification Impacts on Sea-Surface Biology, Biogeochemistry and ClimateMatthew P. Humphreys; Eric P. Achterberg; Alex M. Griffiths; Alison McDonald; Adrian J. Boyce;The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in a batch process for 552 samples collected during two cruises in the northeastern Atlantic and Nordic Seas from June to August 2012. One cruise was part of the UK Ocean Acidification research programme, and the other was a repeat hydrographic transect of the Extended Ellett Line. In combination with measurements made of other variables on these and other cruises, these data can be used to constrain the anthropogenic component of dissolved inorganic carbon (DIC) in the interior ocean, and to help to determine the influence of biological carbon uptake on surface ocean carbonate chemistry. The measurements have been processed, quality-controlled and submitted to an in-preparation global compilation of seawater δ13CDIC data, and are available from the British Oceanographic Data Centre. The observed δ13CDIC values fall in a range from −0.58 to +2.37 ‰, relative to the Vienna Pee Dee Belemnite standard. The mean of the absolute differences between samples collected in duplicate in the same container type during both cruises and measured consecutively is 0.10 ‰, which corresponds to a 1σ uncertainty of 0.09 ‰, and which is within the range reported by other published studies of this kind. A crossover analysis was performed with nearby historical δ13CDIC data, indicating that any systematic offsets between our measurements and previously published results are negligible. Data doi:10.5285/09760a3a-c2b5-250b-e053-6c86abc037c0 (northeastern Atlantic), doi:10.5285/09511dd0-51db-0e21-e053-6c86abc09b95 (Nordic Seas).
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2015Data sources: University of East Anglia digital repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-8-57-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2015Data sources: University of East Anglia digital repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-8-57-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016 Australia, United KingdomThe Royal Society William J. Ripple; Katharine Abernethy; Matthew G. Betts; Guillaume Chapron; Rodolfo Dirzo; Mauro Galetti; Taal Levi; Peter A. Lindsey; David W. Macdonald; Brian Machovina; Thomas M. Newsome; Carlos A. Peres; Arian D. Wallach; Christopher Wolf; Hillary S. Young;� 2016 The Authors. Terrestrial mammals are experiencing a massive collapse in their population sizes and geographical ranges around the world, but many of the drivers, patterns and consequences of this decline remain poorly understood. Here we provide an analysis showing that bushmeat hunting for mostly food and medicinal products is driving a global crisis whereby 301 terrestrial mammal species are threatened with extinction. Nearly all of these threatened species occur in developing countries where major coexisting threats include deforestation, agricultural expansion, human encroachment and competition with livestock. The unrelenting decline of mammals suggests many vital ecological and socio-economic services that these species provide will be lost, potentially changing ecosystems irrevocably. We discuss options and current obstacles to achieving effective conservation, alongside consequences of failure to stem such anthropogenic mammalian extirpation. We propose a multipronged conservation strategy to help save threatened mammals from immediate extinction and avoid a collapse of food security for hundreds of millions of people.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2016Data sources: University of East Anglia digital repositoryRoyal Society Open Science; Oxford University Research ArchiveOther literature type . Article . 2018 . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.160498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu340 citations 340 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 38 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2016Data sources: University of East Anglia digital repositoryRoyal Society Open Science; Oxford University Research ArchiveOther literature type . Article . 2018 . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.160498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 EC | BLUEGENICSEC| BLUEGENICSAlessia, Caso; Alfonso, Mangoni; Gennaro, Piccialli; Valeria, Costantino; Vincenzo, Piccialli;pmid: 30023636
pmc: PMC6044836
A chiral pool protocol toward the synthesis of the smenamide family of natural products is described. Two stereoisomers of smenamide A, namely, ent-smenamide A and 16-epi-smenamide A were synthesized with a 2.6 and 2.5% overall yield, respectively. Their carboxylic acid moieties were assembled starting from S-citronellene via two Wittig reactions and a Grignard process. Its coupling with either (S)- or (R)-dolapyrrolidinone, synthesized from Boc-l-Phe and Boc-d-Phe, respectively, was accomplished by using the Andrus protocol. This work also established the previously unknown relative and absolute configurations of smenamide A.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC6044836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC6044836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Germany, Netherlands, United States, United Kingdom, GermanySpringer Science and Business Media LLC Kara Martin; Katrin Schmidt; Andrew Toseland; Chris A. Boulton; Kerrie Barry; Bank Beszteri; Corina P. D. Brussaard; Alicia Clum; Chris Daum; Emiley A. Eloe-Fadrosh; Allison A. Fong; Brian Foster; Bryce Foster; Michael Ginzburg; Marcel Huntemann; Natalia Ivanova; Nikos C. Kyrpides; Erika Lindquist; Supratim Mukherjee; Krishnaveni Palaniappan; T. B. K. Reddy; Mariam R Rizkallah; Simon Roux; Klaas R. Timmermans; Susannah G. Tringe; Willem H. van de Poll; Neha Varghese; Klaus Valentin; Timothy M. Lenton; Igor V. Grigoriev; Richard M. Leggett; Vincent Moulton; Thomas Mock;pmc: PMC8446083
pmid: 34531387
Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change. Latitudinal ecosystem boundaries in the global upper ocean may be driven by many factors. Here the authors investigate pole-to-pole eukaryotic phytoplankton metatranscriptomes, gene co-expression networks, and beta diversity, finding that geographic patterns are best explained by temperature gradients.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021Data sources: University of East Anglia digital repositoryNARCIS; Nature CommunicationsArticle . 2021Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EsseneScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25646-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021Data sources: University of East Anglia digital repositoryNARCIS; Nature CommunicationsArticle . 2021Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EsseneScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25646-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, SpainElsevier BV Simonetta Fraschetti; Erika Fabbrizzi; Laura Tamburello; María C. Uyarra; Fiorenza Micheli; Enric Sala; Carlo Pipitone; Fabio Badalamenti; Stanislao Bevilacqua; Jordi Boada; Emma Cebrian; Giulia Ceccherelli; Mariachiara Chiantore; Giovanni D'Anna; Antonio Di Franco; Simone Farina; Sylvaine Giakoumi; Elena Gissi; Ivan Guala; Paolo Guidetti; Stelios Katsanevakis; Elisabetta Manea; Monica Montefalcone; Maria Sini; Valentina Asnaghi; Antonio Calò; Manfredi Di Lorenzo; Joaquim Garrabou; Luigi Musco; Alice Oprandi; Gil Rilov; Angel Borja;pmid: 34968935
handle: 11368/3004713 , 11587/474989 , 10261/257559
Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin. This article was undertaken within the COST Action 15121 MarCons (http://www.marcons-cost.eu, European Cooperation in Science and Technology), the Interreg MED AMAre Plus (Ref: 8022) and the project PO FEAMP 2014-2020 Innovazione, sviluppo e sostenibilita ` nel settore della pesca e dell’acquacoltura per la Regione Campania (ISSPA 2.51). M.C.U., A.B. have been funded by the project MEDREGION (European Commission DG ENV/MSFD, 2018 call, Grant Agreement 110661/ 2018/794286/SUB/ENV.C2). Aegean Sea data were retrieved from the project PROTOMEDEA (www.protomedea.eu), funded by DG for Marine Affairs and Fisheries of the EC, under Grant Agreement SI2.721917. JB acknowledges support from the Spanish Ministry of Science and Innovation (Juan de la Cierva fellowship FJC 2018-035566-I). With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S). Este artículo contiene 11 páginas, 2 figuras, 2 tablas. Peer reviewed
ArTS - Archivio dell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 67visibility views 67 download downloads 288 Powered bymore_vert ArTS - Archivio dell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Springer Science and Business Media LLC P. H. Barry; J. M. de Moor; D. Giovannelli; M. Schrenk; D. R. Hummer; T. Lopez; C. A. Pratt; Y. Alpízar Segura; A. Battaglia; P. Beaudry; G. Bini; M. Cascante; G. d’Errico; M. di Carlo; D. Fattorini; K. Fullerton; E. Gazel; G. González; S. A. Halldórsson; K. Iacovino; J. T. Kulongoski; E. Manini; M. Martínez; H. Miller; M. Nakagawa; S. Ono; S. Patwardhan; C. J. Ramírez; F. Regoli; F. Smedile; S. Turner; C. Vetriani; M. Yücel; C. J. Ballentine; T. P. Fischer; D. R. Hilton; K. G. Lloyd;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1298-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1298-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2011 Netherlands, Netherlands, Finland, NetherlandsPublic Library of Science (PLoS) Authors: Matti Kummu; Hans de Moel; Philip J. Ward; Olli Varis;Matti Kummu; Hans de Moel; Philip J. Ward; Olli Varis;VK: T20702 Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water. Peer reviewed
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0020578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu